Department Of Physics

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/57

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Unraveling the Role of Orbital Interaction in the Electrochemical HER of the Trimetallic AgAuCu Nanobowl Catalyst
    (American Chemical Society, 2023-03-24T00:00:00) Biswas, Rathindranath; Dastider, Saptarshi Ghosh; Ahmed, Imtiaz; Barua, Sourabh; Mondal, Krishnakanta; Haldar, Krishna Kanta
    Unraveling the origins of the electrocatalytic activity of composite nanomaterials is crucial but inherently challenging. Here, we present a comprehensive investigation of the influence of different orbitals� interaction in the AuAgCu nanobowl model electrocatalyst during the hydrogen evolution reaction (HER). According to our theoretical study, AgAuCu exhibits a lower energy barrier than AgAu and AgCu bimetallic systems for the HER, suggesting that the trimetallic AgAuCu system interacts optimally with H*, resulting in the most efficient HER catalyst. As we delve deeper into the HER activity of AgAuCu, it was observed that the presence of Cu allows Au to adsorb the H* intermediate through the hybridization of s orbitals of hydrogen and s, dx2-y2, and dz2 orbitals of Au. Such orbital interaction was not present in the cases of AgAu and AgCu bimetallic systems, and as a result, these bimetallic systems exhibit lower HER activities. � 2023 American Chemical Society.
  • Item
    LaCoO3Perovskite Nanoparticles Embedded in NiCo2O4Nanoflowers as Electrocatalysts for Oxygen Evolution
    (American Chemical Society, 2022-11-08T00:00:00) Kubba, Deeksha; Ahmed, Imtiaz; Kour, Pawanpreet; Biswas, Rathindranath; Kaur, Harpreet; Yadav, Kamlesh; Haldar, Krishna Kanta
    It is essential to design high-efficiency, stable, and inexpensive electrocatalysts for the oxygen evolution reaction (OER). We fabricate a hybrid system of perovskite LaCoO3 with spinel NiCo2O4 denoted LaCoO3/NiCo2O4 via an in situ hydrothermal process. In situ incorporation of LaCoO3 nanoparticles on the NiCo2O4 nanoflower surface is confirmed by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) images. Benefiting from the interface engineering, the obtained LaCoO3/NiCo2O4 hybrid nanoflowers exhibit the lowest overpotential of 353 at a current density of 10 mA/cm2 and a small Tafel slope of 59 mV/dec in alkaline media compared with pristine LaCoO3 (401 mV, 116 mV/dec) and NiCo2O4 (386 mV, 73 mV/dec). The optimized sample possesses a higher electrochemical surface of 111.45 cm2 than LaCoO3 perovskite (35.37 cm2) and NiCo2O4 spinel oxide (61.37 cm2) structures. The enhanced OER performance of the LaCoO3/NiCo2O4 composite structure is due to the accumulation of LaCoO3 nanoparticles over NiCo2O4 petals, which introduces a substantial number of electrochemically active sites for the catalysis process to promote charge and mass transport. In addition to this, LaCoO3/NiCo2O4 exhibits long-term stability over 20 h. Thus, it is believed that the excellent OER activity of the LaCoO3/NiCo2O4 composite structure is associated with strong interaction between LaCoO3 and NiCo2O4 as well as a large surface area and a unique flower structure. � 2022 American Chemical Society.
  • Item
    Effect of oxygen vacancies, lattice distortions and secondary phase on the structural, optical, dielectric and ferroelectric properties in Cd-doped Bi2Ti2O7 nanoparticles
    (Elsevier Ltd, 2021-04-27T00:00:00) Anu; Yadav, Kamlesh; Gaur, Anurag; Haldar, Krishna Kanta
    (Bi1-xCdx)2Ti2O7 (x = 0.00, 0.02, 0.04, 0.06, 0.08, 0.10 and 0.12) nanoparticles are synthesised using the co-precipitation method. The prepared samples show pyrochlore phase formation except for x = 0.02 and 0.08, where Bi4Ti3O12 appears as a secondary phase. The crystallite size and unit cell volume decrease while the strain and dislocation density increase with an increase in Cd-doping. The vibrational bands corresponding to Cd?O and C[dbnd]O are red-shifted, while the H[sbnd]O[sbnd]H bending band is blue-shifted with increasing Cd-doping. The band gap energy for x = 0.00 is found to be 1.78 eV. It increases with an increase in �x� up to 0.06 and then decreases with a further increase in �x� except for x = 0.02 and x = 0.08. The impedance data show non-Debye type relaxation. The pyrochlore phase is found to be non-ferroelectric. However, the samples with x = 0.02 and x = 0.08 having the secondary phase (Bi4Ti3O12) are ferroelectric. � 2021 Elsevier Ltd