Department Of Physics

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/57

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Two-dimensional ?-PdX2 (X = S, Te) monolayers for efficient solar energy conversion applications
    (Royal Society of Chemistry, 2022-02-09T00:00:00) Jakhar, Mukesh; Kumar, Ashok
    The search for highly effective and environmentally safe photocatalysts for water splitting and photovoltaic solar cells is essential for renewable solar energy conversion and storage. Based on first-principle calculations, we show that novel 2D ?-PdX2 (X = S, Te) monolayer possesses excellent stability and great potential in solar energy conversion applications. Comprehensive studies show that the ?-PdS2 monolayer exhibits semiconductor characteristics with an indirect gap, suitable band alignment, efficient carrier separation, and high solar to hydrogen (STH) efficiency, supporting its good photoelectronic performance. The surface catalytic and adsorption/intercalation energy calculation reveals that the photogenerated electrons have adequate driving forces to render hydrogen reduction half-reactions to proceed spontaneously and the ability to cover and incorporate water molecules on the ?-PdS2 monolayer. Besides, the ?-PdTe2 monolayer is a promising donor material for excitonic solar cells with high photovoltaic performance. More importantly, due to suitable donor band gap and small conduction band offset in the proposed type-II heterostructure, the power conversion efficiencies (PCE) were calculated up to ?23% (?-PdTe2/WTe2), ?21% (?-PdTe2/MoTe2) and ?18% (?-PdTe2/?-PdS2), making it a promising candidate for solar energy conversion applications. � 2022 The Royal Society of Chemistry
  • Item
    Tunable photocatalytic water splitting and solar-to-hydrogen efficiency in ?-PdSe2monolayer
    (Royal Society of Chemistry, 2021-08-18T00:00:00) Jakhar, Mukesh; Kumar, Ashok
    Direct production of hydrogen from photocatalytic water splitting is a potential solution to overcome global energy crisis. Herein, based on first-principles calculations, we demonstrate that the two-dimensional ?-PdSe2 monolayer is a promising candidate for efficient photocatalytic water splitting in acidic and alkaline media as well as neutral medium with highly efficient solar-to-hydrogen efficiency. ?-PdSe2 monolayer shows low cleavage energy which endorses the possibility of its mechanical exfoliation from layered bulk ?-PdSe2. Remarkably, ?-PdSe2 monolayer is semiconducting with indirect band gap of 1.96 eV with perfect engulfing the redox potential of water in a wide range of pH of medium. ?-PdSe2 monolayer exhibits good light harvesting ability and adequate driving forces for water redox reaction in wide range of pH (0 to 12). Comprehensive investigation of pH dependent water splitting indicates that the ?-PdSe2 monolayer is a better candidate for efficient water splitting in alkaline media rather than acidic or neutral medium. In addition, high solar-to-hydrogen efficiency as high as ?17% is obtained that shows ?-PdSe2 monolayer a promising candidate for overall photocatalytic water-splitting. � The Royal Society of Chemistry.