Department Of Physics
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/57
Browse
3 results
Search Results
Item All-redox hybrid supercapacitors based on carbon modified stacked zinc cobaltite nanosheets(Royal Society of Chemistry, 2023-09-12T00:00:00) Kour, Simran; Kour, Pawanpreet; Sharma, A.L.The role of energy in the present century has increased with the fast advancement of the global economy. In this regard, hybrid supercapacitors (HSCs) as energy storage systems have become an extensive research focus worldwide. This study reports the synthesis of carbon-loaded ZnCo2O4 stacked nanosheets via an in situ hydrothermal process followed by annealing. The electrochemical response was tested in a 2-electrode system. The optimized composite exhibited a capacitance of ?527.6 F g?1 at 5 mV s?1. The symmetric SC (SSC) possessed an energy density (Ed) of ?17.3 W h kg?1 corresponding to a power density (Pd) of 2.25 kW kg?1. Two asymmetric all-redox HSCs have also been fabricated using an optimized composite material as the positive electrode. The previously synthesized MnCo2O4/AC (HSC1) and MnO2/AC (HSC2) were taken as negative electrodes. HSC1 exhibited an Ed of ?24.4 W h kg?1 corresponding to a Pd of ?0.8 kW kg?1. On the other hand, HSC2 exhibited the highest Ed of ?30.8 W h kg?1 at 2.4 kW kg?1. The real-time application of the composite is tested with the fabricated HSCs. HSC1 exhibited a capacitive retention of ?72.2% after 10 000 cycles. On the other hand, HSC2 exhibited a capacitive retention of ?73.4% after 10 000 cycles. The SSC, HSC1, and HSC2 illuminated a 39 red LED panel for ?3 min, 7 min, and 13 min, respectively. The results suggested the promising performance of all-redox HSCs. The overall results present a sustainable approach for creating hierarchical energy materials for the construction of future energy-storage systems. � 2023 The Royal Society of Chemistry.Item Self-assembled carbon wrapped manganese cobaltite nano-composite with promising electrochemical performance for symmetric and asymmetric supercapacitor device(Elsevier Ltd, 2023-05-27T00:00:00) Kour, Simran; Kour, Pawanpreet; Sharma, A.L.The growing energy requirements of modern society have led to an intensive search for advanced supercapacitor (SC) electrode materials. Binary transition metal oxides with excellent supercapacitive performance are among the most promising materials. However, the phase transformation of these metal oxides during repeated charging/discharging is a major concern, which depletes their cyclic performance. Coating metal oxides with carbon can provide structural stability to the metal oxide, thereby increasing their cyclic life. In addition, the highly conductive carbon enhances the capacitance of metal oxides by allowing the effective transfer of charges from MnCo2O4 to the current collector. In this study, self-assembled carbon-wrapped MnCo2O4 composite has been prepared through a two-step process involving hydrothermal and solution-mixing processes. The structural/electrochemical performances of the composites have been investigated. The optimized composite offered a maximum capacitance of 626.8 Fg?1 withholding 98 % of capacitance for 6000 cycles. Furthermore, the electrochemical performance of the composite has also been tested in an all-redox symmetric SC (SSC) as well asymmetric (ASC) configuration. In the symmetric cell, 30.2 Whkg?1 of energy is reported for 1.6 kWkg?1 of power. The asymmetric cell with the optimized composite as a cathode and MnO2/Activated carbon as an anode was fabricated. The ASC displayed 45.5 Whkg?1 of energy corresponding to 10 kWkg?1. Three SSCs/ASCs in series illuminated a panel of 39 red-LEDs for 9 and 15 min, respectively. The results suggest the promising performance of such composites for hybrid supercapacitors. Thus, the fabrication of all-redox-type SSCs/ASCs can be a futuristic approach for hybrid storage systems. � 2023 Elsevier LtdItem Hierarchical template-free chestnut-like manganese cobaltite for high-performance symmetric and asymmetric supercapacitor(Elsevier B.V., 2022-11-25T00:00:00) Kour, Simran; Tanwar, Shweta; Kour, Pawanpreet; Sharma, A.L.In this work, template-free Chestnut-like MnCo2O4 microspheres are synthesized using a straight-forward hydrothermal process succeeded by calcination. Urea as a reducing/precipitating agent can play an essential role in controlling the morphology of the material without using any additional surfactants or templates. The effect of reducing agent (Urea) on the structural and morphological evolution of MnCo2O4 has been studied. The electrochemical performance of the synthesized materials is investigated in a real device two-electrode cell configuration (symmetric and asymmetric system) rather than a three-electrode configuration. The two-electrode system gives more accurate and practical evaluation of the capacitive behavior of the material. The MnCo2O4 displayed the highest capacitance of 245.34 F g?1 at 5 mV s?1 for 0�1 V in a symmetric cell configuration. It also held an energy density of 22.24 Wh kg?1 at 1500 W kg?1. The optimized sample showed outstanding cyclic performance with only 3% of capacitance loss after 5000 cycles. Based on the structural and electrochemical findings, a charge storage mechanism has been proposed for the symmetric SC. Furthermore, a hybrid asymmetric supercapacitor with MnCo2O4 as a cathode and the previously synthesized MnO2/AC as an anode is also fabricated which exhibited an energy response of 30.12 Wh kg?1 for a power of 7000 W kg?1. For practical applications, different colored LEDs (red, yellow, green, and blue) and a panel with six red LEDs have been illuminated. The panel with six red LEDs is illuminated for 12 mins. for symmetric supercapacitor and 18 mins. for asymmetric supercapacitor. All these remarkable outcomes suggested that the synthesized material has wide potential for supercapacitors. � 2022