Department Of Physics

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/57

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Effects of Dy3+-doping on the band-gap widening and formation of mixed cubic and monoclinic phases of Sm2O3 nanoparticles
    (Springer Science and Business Media Deutschland GmbH, 2023-10-30T00:00:00) Sain, Rachana; Roy, Ayan; Kumar, Ajay; Anu; Deeksha; Kour, Pawanpreet; Singh, Ravi Pratap; Yadav, Kamlesh
    We synthesized Sm2?xDyxO3 (where X = 0.00, 0.03, 0.06, 0.09, and 0.12) nanoparticles using a co-precipitation method and investigated their structural and optical properties. X-ray diffraction (XRD) results reveal that Dy3+-doping in Sm2O3 nanoparticles leads to the formation of a monoclinic polymorphic phase along with the cubic phase of Sm2O3 and its fraction increases with increasing Dy3+-doping concentration. The substitution of Dy3+ at the Sm3+ site converts the cubic Sm2O3 unit cells into distorted monoclinic Sm2?XDyXO3 unit cells. The average crystallite and nanoparticle sizes decrease with increasing Dy3+-doping concentration. Dy3+-ions act as particle size inhibitors, which is attributed to an increase in the segregation of Dy3+-dopant ions at the surface of the nanoparticles with increasing Dy3+-doping content. The peak appearing at 851�cm?1 in the Fourier transform infrared spectroscopy (FTIR) spectra confirms the formation of Sm2O3. Widening of the band gap (Eg) above the band gap of pure cubic Sm2O3 with Dy3+-doping concentration has been observed for X > 0.06, which is due to the Moss-Burstein and quantum size effects. � 2023, The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature.
  • Item
    Effects of Interfacial Interactions and Nanoparticle Agglomeration on the Structural, Thermal, Optical, and Dielectric Properties of Polyethylene/Cr2O3 and Polyethylene/Cr2O3/CNTs Nanocomposites
    (Springer, 2022-11-22T00:00:00) Gupta, Jaya; Kumar, Ajay; Roy, Ayan; Anu; Deeksha; Kour, Pawanpreet; Singh, Ravi Pratap; Yogesh, Gaurav Kumar; Yadav, Kamlesh
    In this report, we have synthesized the binary and ternary phase nanocomposites [(polyethylene (PE)1?X/(Cr2O3)x) and (PE)1?X/(Cr2O3)X/CNTs (where X = 0,�2%, 4%, 6%, 8%, and 10%)] using the melt mixing method and studied the structural, optical, thermal and dielectric properties with an increase in Cr2O3 nanofiller concentration. Our results show an increase in interfacial interactions between Cr2O3 nanofiller and PE matrix with an increase in nanofiller concentration up to X = 6%. After that, the interactions decreased with a further increase in X because of the increase in the size of the Cr2O3 nanoparticle aggregates. Incorporating 2% carbon nanotubes (CNTs) into (PE)1?X/(Cr2O3)X nanocomposites, further decreases the interactions between the Cr2O3 nanofiller and the PE matrix. � 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.