Department Of Physics

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/57

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Enhanced Curie temperature and superior temperature stability by site selected doping in BCZT based lead-free ceramics
    (Elsevier Ltd, 2022-01-31T00:00:00) Kumari, Sapna; Kumar, Amit; Kumar, Aman; Kumar, V.; Thakur, Vikas N.; Kumar, Ashok; Goyal, P.K.; Gaur, Anurag; Arya, Anil; Sharma, A.L.
    In this work, Bi3+ doped Ba0.98-3x/2BixCa0.02Zr0.02Ti0.976Cu0.008O3 [0 ? x ? 0.03] lead free ceramics, to be employed for structural, dielectric and ferroelectric studies, have been synthesized via conventional solid state reaction method. Rietveld refinement of the X-ray diffraction (XRD) data evidences the existence of a pure perovskite phase with tetragonal symmetry for all ceramics. The Scanning Electron Microscopy (SEM) reveals that the grain size, which is 16.14 ?m for x = 0 reduced to 2.11 ?m for x = 0.03. Dielectric studies demonstrate excellent dielectric behavior with high Curie temperature (TC ?159 �C), high dielectric constant (?r ?834, ?max ? 3146), and a low dielectric loss (tan? ? 0.019), for an optimum value of x = 0.02. The analysis of temperature coefficient of the dielectric permittivity indicates the applicability of these materials in multilayer ceramic capacitors. Impedance studies, conducted to understand the underlying physical mechanisms, are found to be in good agreement with the results of structural and dielectric studies. Furthermore, the ferroelectric measurement confirms the ferroelectric nature for all samples with an energy storage efficiency (?) of ?42% for x = 0.02 composition. � 2022 Elsevier Ltd and Techna Group S.r.l.
  • Thumbnail Image
    Item
    Ultra-narrow blue phosphorene nanoribbons for tunable optoelectronics
    (Royal Society of Chemistry, 2017) Swaroop, Ram; Ahluwalia, P. K.; Tankeshwar, K.; Kumar, Ashok
    We report optoelectronic properties of ultra-narrow blue phosphorene nanoribbons (BPNRs) within the state-of-the-art density functional theory framework. The positive but small value of formation energy (?0.1 eV per atom) indicates the relative ease of the formation of BPNRs from their two-dimensional (2D) counterpart. The oscillatory behaviour of the electronic band gap of bare BPNRs with increasing width is attributed to the reconstruction of edge atoms. The static dielectric constant of BPNRs depends on the width and applied strain which in turn shows consistency with the Penn's model expression for semiconductors. Bare BPNRs exhibit both ? and ? + ? plasmonic structures while passivated ones possess only a ? + ? plasmonic structure that get blue-shifted (as large as ?3 eV) on increasing the width of the BPNRs which makes electron energy loss spectroscopy useful for identifying the width of BPNRs in real experimental situations. The mechanical strain induces a small red shift in, which is attributed to the modification in electronic band dispersion due to a different superposition of atomic orbitals on the application of applied strain. These tunable electronic and dielectric properties of BPNRs mean they may find applications in optoelectronic devices based on blue phosphorene. ? The Royal Society of Chemistry.
  • Thumbnail Image
    Item
    Electronic, Mechanical, and Dielectric Properties of Two-Dimensional Atomic Layers of Noble Metals
    (Springer New York LLC, 2017) Kapoor, Pooja; Kumar, Jagdish; Kumar, Arun; Kumar, Ashok; Ahluwalia, P. K.
    We present density functional theory-based electronic, mechanical, and dielectric properties of monolayers and bilayers of noble metals (Au, Ag, Cu, and Pt) taken with graphene-like hexagonal structure. The Au, Ag, and Pt bilayers stabilize in AA-stacked configuration, while the Cu bilayer favors the AB stacking pattern. The quantum ballistic conductance of the noble-metal mono- and bilayers is remarkably increased compared with their bulk counterparts. Among the studied systems, the tensile strength is found to be highest for the Pt monolayer and bilayer. The noble metals in mono- and bilayer form show distinctly different electron energy loss spectra and reflectance spectra due to the quantum confinement effect on going from bulk to the monolayer limit. Such tunability of the electronic and dielectric properties of noble metals by reducing the degrees of freedom of electrons offers promise for their use in nanoelectronics and optoelectronics applications. ? 2016, The Minerals, Metals & Materials Society.