Department Of Physics
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/57
Browse
1 results
Search Results
Item Synergistic Effect of Crystallization Control and Defect Passivation Induced by a Multifunctional Primidone Additive for High-Performance Perovskite Solar Cells(American Chemical Society, 2022-12-22T00:00:00) Saykar, Nilesh G.; Iqbal, Muzahir; Ray, Asim K.; Mahapatra, Santosh K.The ionic nature of organic-inorganic metal halide perovskites endows intrinsic defects at the surface of the polycrystalline films. Simultaneous defect passivation during the growth of perovskite films could inhibit defect formation to a great extent. Herein, the anticonvulsant drug primidone (PRM) is demonstrated as a novel additive to control the crystallization and defect passivation of perovskites. The spectroscopic measurements support theoretical predictions showing the strong interaction between active functional groups and PbI2. An amount of PRM is tuned to obtain the perfect perovskite films with improved grain size and crystallinity than their control counterparts. Efficient PbI antisite defect passivation suppresses the non-radiative recombinations, resulting in higher luminance intensity and significantly longer charge carrier lifetimes. The PRM-modified perovskite solar cells (PSCs) show a power conversion efficiency (PCE) of 18.73%, much higher than that of control PSCs (16.62%). The ambient stability of PRM-modified PSCs is meritoriously increased compared to control PSCs. The PRM-modified PSCs show stability retention of up to 85% of the initial PCE after 1000 h, while control PSCs retain only 25% of the initial PCE after 550 h. The multifunctional defect passivation approach with the PRM additive shows the effective way for the efficiency and stability improvement of PSCs. � 2022 American Chemical Society.