Department Of Physics

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/57

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Synergistic Effect of Crystallization Control and Defect Passivation Induced by a Multifunctional Primidone Additive for High-Performance Perovskite Solar Cells
    (American Chemical Society, 2022-12-22T00:00:00) Saykar, Nilesh G.; Iqbal, Muzahir; Ray, Asim K.; Mahapatra, Santosh K.
    The ionic nature of organic-inorganic metal halide perovskites endows intrinsic defects at the surface of the polycrystalline films. Simultaneous defect passivation during the growth of perovskite films could inhibit defect formation to a great extent. Herein, the anticonvulsant drug primidone (PRM) is demonstrated as a novel additive to control the crystallization and defect passivation of perovskites. The spectroscopic measurements support theoretical predictions showing the strong interaction between active functional groups and PbI2. An amount of PRM is tuned to obtain the perfect perovskite films with improved grain size and crystallinity than their control counterparts. Efficient PbI antisite defect passivation suppresses the non-radiative recombinations, resulting in higher luminance intensity and significantly longer charge carrier lifetimes. The PRM-modified perovskite solar cells (PSCs) show a power conversion efficiency (PCE) of 18.73%, much higher than that of control PSCs (16.62%). The ambient stability of PRM-modified PSCs is meritoriously increased compared to control PSCs. The PRM-modified PSCs show stability retention of up to 85% of the initial PCE after 1000 h, while control PSCs retain only 25% of the initial PCE after 550 h. The multifunctional defect passivation approach with the PRM additive shows the effective way for the efficiency and stability improvement of PSCs. � 2022 American Chemical Society.
  • Item
    Flexible zinc oxide photoelectrode for photo electrochemical energy conversion
    (Springer, 2021-05-18T00:00:00) Shiyani, T.; Banerjee, I.; Mahapatra, Santosh K.; Ray, Asim K.
    Photoelectrochemical properties have been investigated for flexible photoelectrodes containing 310�nm thick ZnO film on spin-coated ITO/PET. The high crystalline structure of ZnO was studied using x-ray diffraction pattern. A value of 3.4�eV has been estimated for optical band gap from its absorption spectra. The flexible ZnO photoelectrode was demonstrated to generate photoelectrochemical current. The photocurrents are enhanced by 4% whereas flat-band potential is shifted by 8�V due to the illumination. Values of 1.022 and 0.714 AW?1 were found to be for photo switching and photoresponsivity, respectively. ZnO/ITO/PET can be used as a substrate for making flexible hybrid PEC devices to generate solar power and solar fuels. � 2021, This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply.