Department Of Physics
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/57
Browse
2 results
Search Results
Item Optimization of Free standing Polymer Electrolytes films for Lithium ion batteries application(Integrated Science, 2016) Sadiq, M.; Arya, Anil; Sharma, A. L.The free standing polymer nancomposite films consisting of blend polymer based on Poly(acrylonitrile) (PAN) as host polymer–Poly(ethylene oxide)(PEO) as a copolymer, Dimethylformamide (DMF) as solvent and Lithium hexaflourophosphate (LIPF6) as a conducting speciesm were prepared. Keeping in view of characterization of solid state film such as, Fourier transform infrared (FTIR) spectroscopy is done for an understanding of the microscopic interaction among the different component present in the material system. The energy storage/conversion device applications have been analyzed by the impedances spectroscopy. The surface morphology or micro-structural of the polymer nanocomposite electrolytes film was analyzed by FESEM. The electrochemical stability window was about ~4V for the polymer electrolyte film at (/Li=6). The advantageous outcome of PAN combining with PEO based electrolytes is in comparable electrical conductivity and wider electrochemical stability window. Further optimization might lead to practical solid state polymer electrolytes for lithium ion batteries.Item Electrical Conductivity and Ion Transport Number Analysis of Polymer Nanocomposite Films(The Research Publication, 2016) Sharma, Parul Kumar; Sharma, Anshu Kumar; Sadiq, M.; Sharma, A. L.Solid state free standing polymer nanocomposite films have been used in numerous vitality related segments like: high energy density solid polymer batteries, PEM fuel cells, super capacitors, etc. Such applications require a desirable conductivity value of the order of ~10-3 Scm-1at room temperature. A free standing transparent film of solid state polymer electrolyte based on PEO+ LiPF6 with different compositions of nano sized filler (BaTiO3) in weight percent (x = 0, 1, 2, 5, 10, 15, 20 ) is synthesized by using standard solution cast technique. Surface morphology of the prepared polymer composition is examined by field emission scanning electron microscopy (FESEM). I-V characteristics of the prepared sample have been characterized for the stability of electrochemical potential window. The transport number analysis of prepared sample has been done to separate out the contribution due to ions and electrons in the electrical conductivity results. The transference number has been estimated and found of the order of ~94%.