Department Of Physics
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/57
Browse
2 results
Search Results
Item Synergistically modified WS2@PANI binary nanocomposite-based all-solid-state symmetric supercapacitor with high energy density(Royal Society of Chemistry, 2022-03-09T00:00:00) Iqbal, Muzahir; Saykar, Nilesh G.; Alegaonkar, Prashant S.; Mahapatra, Santosh K.The rapid development of intelligent, wearable, compact electronic equipment has triggered the need for durable, flexible, and lightweight portable energy storage devices. Nanomaterials that are capable of delivering the high specific power density and commensurate energy density are potential candidate for realizing such devices. Herein, we report the facile synthesis of a binary nanocomposite WS2@PANI by utilizing hydrothermal and physical blending techniques to assess it as an electrode material for high-performance supercapacitors. The nanocomposite electrode delivered specific capacitance >335 F g?1 @ 10 mV s?1 (two-electrode), achieving energy and power densities of ?80 W h kg?1 and ?800 W kg?1, respectively, with capacitance retention of 83% even after 5000 charge-discharge cycles @ 10 A g?1, all of which are superior to the WS2 electrode. Dunns model quantifies capacitive and intercalative contributions that showed the cumulative effect of both to realize a robust, cost-effective, and energy-efficient device. The strategically incorporated PANI broadened the electrochemical window and the device's overall performance, resulting in high specific energy density. We demonstrated that our all-solid-state symmetric supercapacitor could be used to illuminate a light-emitting diode and drive a rotary motor. We believe that our WS2@PANI binary nanocomposite will be a potential candidate for energy storage devices. � 2022 The Royal Society of ChemistryItem High-performance supercapacitor based on MoS2@TiO2 composite for wide range temperature application(Elsevier Ltd, 2021-06-07T00:00:00) Iqbal, Muzahir; Saykar, Nilesh G.; Arya, Anil; Banerjee, Indrani; Alegaonkar, Prashant S.; Mahapatra, S.K.Transition metal sulphide and their composites gain attention as electrode material in energy storage devices due to their superior properties like excellent conductivity, high surface area, and porosity. We report an evaluation of the electrochemical performance of MoS2@TiO2 binary composite in symmetric supercapacitor assembly at different temperatures. A facile hydrothermal technique is used to prepare MoS2@TiO2 binary composite. Structural and morphological analysis reveals that highly crystalline composite comprising MoS2 assembled in flower-like flake configuration, whereas, TiO2 in nanorods form are prepared. Among all three electrodes, MoS2@15%TiO2 demonstrates maximum specific capacitance 210 F/g at 10 mV/s with excellent cycling stability (98%, 2000 cycles) at ambient temperature. It may be concluded that the mono-phased, mesoporous structure is a key feature behind the improved performance over the other electrodes. Further, improvement in charge-discharge characteristics has been observed by a factor of 200% at 60 �C attributing to low activation energy and faster ion dynamics at elevated temperatures. The impedance spectroscopic analysis reveals a significant reduction in interfacial impedances that leads to a superior capacitance effect compounded with favourable electrolytic charge dynamics. The highest energy density is reported to be 21 Wh/kg with a power density of 1300 W/kg in symmetric configuration. Synergistic effect of the binary system along with unique surface morphology and charge storage followed by intercalation and capacitive mechanism results in enhanced performance of supercapacitor with MoS2@15%TiO2. Thus, binary MoS2@TiO2 composite seems to be an exceptional candidate for the energy storage device operating at a wide temperature range (25�60 �C). � 2021 Elsevier B.V.