Department Of Physics

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/57

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Insight into use of biopolymer in hybrid electrode materials for supercapacitor applications�A critical review
    (American Institute of Physics Inc., 2023-05-12T00:00:00) Tanwar, Shweta; Sharma, A.L.
    The shortage of natural resources due to the progression of the human population and environmental pollution has become crucial concern topics to resolve. One of the best ways to resolve this is to develop renewable energy-based storage systems. Supercapacitors are emerging as promising storage systems via providing rapid charging/discharging and high power delivery, but there is a need to explore low-cost, environment-friendly, non-toxic, abundant, and biodegradable electrode materials for supercapacitors. In this regard, biopolymers are observed to be popular for storage applications as they are of high porosity, cost-effective, easily available, low-weight, and environment friendly and have biodegradability properties. The biopolymer-based electrode has a desirable morphology and high surface area and exhibits admirable electrochemical properties. The focus of this report is to highlight (i) the inclusive details of supercapacitors and their types along with strategies to improve their electrochemical performance, (ii) biopolymers and their types used for supercapacitor applications, (iii) various synthesis routes that could be adopted for designing electrode materials based on biopolymers for supercapacitors, and (iv) challenges and future scope of biopolymers as the electrode material in supercapacitor applications. The detailed study here in this report is found to be a topic of interest for the scientific community to fabricate and prepare low-cost, eco-friendly, high electrochemical performance exhibiting electrode materials for supercapacitor applications. � 2023 Author(s).
  • Item
    Synthesis, phase confirmation and electrical properties of (1 ? x)KNNS?xBNZSH lead-free ceramics
    (Springer, 2022-02-02T00:00:00) Kumar, Amit; Kumari, Sapna; Kumar, V.; Kumar, Prashant; Thakur, Vikas N.; Kumar, Ashok; Goyal, P.K.; Arya, Anil; Sharma, A.L.
    In the present work, lead-free piezoelectric ceramics (Rx)(K0.5Na0.5)(Nb0.96Sb0.04O3)?x(Bi0.5Na0.5)(Zr0.8Sn0.1Hf0.1)O3 [abb. as (Rx)KNNS?xBNZSH, 0 ? x ? 0.04] were prepared via solid-state sintering technique. The thermal behavior of mixed powders has been investigated for x = 0, 0.02, and 0.04 using TGA-DSC analysis to estimate the calcination temperature. The structural, morphological, dielectric, ferroelectric and piezoelectric properties are analyzed through the appropriate characterization techniques. The X-ray diffraction (XRD) patterns demonstrate a pure perovskite phase structure for all the sintered samples. Further, the coexistence of rhombohedral to orthorhombic (R-O) phase is observed in ceramic sample with x = 0.02. The morphology of all the sintered samples exhibits an inhomogeneous, dense microstructure with the rectangular grain, while for x = 0.02, a relatively homogeneous distribution of grains is observed. BNZSH doping decreases the average grain size from 2.22 to 0.33�?m for x = 0 to x = 0.04, respectively. Owing to the presence of multiple-phase coexistence as well as the improved microstructure and enhanced dielectric properties (dielectric constant ?r = 1080, ?max = 5301; Curie temperature - TC ~ 317��C; dielectric loss - tan? ~ 6%) the ceramics with x = 0.02 has been found to have a large piezoelectric coefficient (d33) of ~180 pC/N, remnant polarization (Pr) ~ 16.7 �C/cm2 and coercive field (Ec) ~ 10.7�kV/cm. We believe it will expand the range of applications for KNN-based ceramics. � 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.