Department Of Physics

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/57

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Nanofiller-assisted Na+-conducting polymer nanocomposite for ultracapacitor: structural, dielectric and electrochemical properties
    (Springer, 2021-01-04T00:00:00) Kamboj, Vashu; Arya, Anil; Tanwar, Shweta; Kumar, Vijay; Sharma, A.L.
    We report the preparation of ZrO2 nanofiller-incorporated polymer nanocomposite electrolyte based on the PEO-NaPF6 matrix via standard solution cast method. The structure and morphology of polymeric films have been examined with X-ray diffraction and field emission scanning electron microscopy. Different interactions between the polymer, salt and nanofiller have been examined by Fourier transform infrared technique. The temperature-dependent (40�100��C) electrical conductivity has been examined from complex impedance spectroscopy (CIS). The highest ionic conductivity is exhibited by 5�wt% nanofiller-based electrolyte and recorded ~ 2 � 10�4�S�cm?1 at 100��C. The voltage stability window of polymeric film checked from linear sweep voltammetry is about ~ 4�V, and ion transference number close to unity confirms the major contribution from ion conduction. The dielectric properties have been explored in terms of complex permittivity, loss tangent and complex conductivity. The dielectric plots have been further fitted with an associated equation to evaluate principal dielectric parameters. The optimized polymer electrolyte possesses the lowest relaxation time and the highest dielectric constant that suggests the highest ionic conductivity, which is in good correlation with impedance results. The dc conductivity is also highest for the optimum system, and relaxation time decreases with an increase in temperature. The thermal stability of polymer electrolytes is about 200��C, as examined by thermogravimetric analysis (TGA). The ion transport parameters n, ?, D have been evaluated via FTIR, impedance spectroscopy and Bandara and Mellander (B�M) approach. Finally, the optimized polymer nanocomposite film has been used as an electrolyte-cum-separator for the fabrication of a solid-state symmetric supercapacitor. The electrochemical parameters specific capacitance, energy density, power density have been examined from cyclic voltammetry and galvanostatic charge�discharge technique. It may be concluded that nanofiller incorporation is an effective strategy to enhance the properties of electrolyte and has the potential to adopt as an electrolyte-cum-separator for ultracapacitor. � 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature.
  • Thumbnail Image
    Item
    Structural, electrical properties and dielectric relaxations in Na+-ion-conducting solid polymer electrolyte
    (Institute of Physics Publishing, 2018) Arya, A.; Sharma, A.L.
    In this paper, we have studied the structural, microstructural, electrical, dielectric properties and ion dynamics of a sodium-ion-conducting solid polymer electrolyte film comprising PEO8-NaPF6+ x wt. % succinonitrile. The structural and surface morphology properties have been investigated, respectively using x-ray diffraction and field emission scanning electron microscopy. The complex formation was examined using Fourier transform infrared spectroscopy, and the fraction of free anions/ion pairs obtained via deconvolution. The complex dielectric permittivity and loss tangent has been analyzed across the whole frequency window, and enables us to estimate the DC conductivity, dielectric strength, double layer capacitance and relaxation time. The presence of relaxing dipoles was determined by the addition of succinonitrile (wt./wt.) and the peak shift towards high frequency indicates the decrease of relaxation time. Further, relations among various relaxation times () have been elucidated. The complex conductivity has been examined across the whole frequency window; it obeys the Universal Power Law, and displays strong dependency on succinonitrile content. The sigma representation () was introduced in order to explore the ion dynamics by highlighting the dispersion region in the Cole-Cole plot () in the lower frequency window; increase in the semicircle radius indicates a decrease of relaxation time. This observation is accompanied by enhancement in ionic conductivity and faster ion transport. A convincing, logical scheme to justify the experimental data has been proposed. ? 2018 IOP Publishing Ltd.
  • Thumbnail Image
    Item
    Insights into the use of polyethylene oxide in energy storage/conversion devices: A critical review
    (Institute of Physics Publishing, 2017) Arya, A.; Sharma, A.L.
    In this review, the latest updates in poly (ethylene oxide) based electrolytes are summarized. The ultimate goal of researchers globally is towards the development of free-standing solid polymeric separators for energy storage devices. This single free-standing solid polymeric separator may replace the liquid and separator (organic/inorganic) used in existing efficient/smart energy technology. As an example, polyethylene oxide (PEO) consists of an electron donor-rich group which provides coordinating sites to the cation for migration. Owing to this exclusive structure, PEO exhibits some remarkable properties, such as a low glass transition temperature, excellent flexibility, and the ability to make complexation with various metal salts which are unattainable by another polymer host. Hence, the PEO is an emerging candidate that has been most examined or is currently under consideration for application in energy storage devices. This review article first provides a detailed study of the PEO properties, characteristics of the constituents of the polymer electrolyte, and suitable approaches for the modification of polymer electrolytes. Then, the synthesization and characterizations techniques are outlined. The structures, characteristics, and performance during charge-discharge of four types of electrolyte/separators (liquid, plasticized, and dispersed and intercalated electrolyte) are highlighted. The suitable ion transport mechanism proposed by researchers in different renowned groups have been discussed for the better understanding of the ion dynamics in such systems. ? 2017 IOP Publishing Ltd.