Department Of Physics
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/57
Browse
4 results
Search Results
Item High performance of the sodium-ion conducting flexible polymer blend composite electrolytes for electrochemical double-layer supercapacitor applications(John Wiley and Sons Inc, 2022-04-12T00:00:00) Sadiq, Mohd; Tanwar, Shweta; Raza, Mohammad Moeen Hasan; Aalam, Shah Masheerul; Sarvar, Mohd; Zulfequar, Mohammad; Sharma, A.L.; Ali, JavidHerein, we present the synthesis of a nanocomposite blend of polyvinyl alcohol (PVA), polyethylene glycol (PEG), sodium nitrate (NaNO3), and various weight percent of nanofillers, BaTiO3, using a simple standard solution casting technique. The prepared nanocomposites are characterized in detail via techniques such as X-ray diffraction technique, field-emission scanning microscope, FTIR, and Raman spectra for confirming the crystal structure, morphology, and chemical bond formation within the samples, respectively. The suitable ionic conductivity of prepared samples is in the range of 10?4�10?8�S/cm at room temperature. Further, its maximum electrochemical stability window is ~4.1 V, and the ionic transference number is about 0.96 (15 wt%) at room temperature. The results associated with the optimized polymer nanocomposite motivated us to check its practical applicability for supercapacitors. The cyclic voltammetry of the fabricated cell based on optimized polymer as separator cum electrolyte appears as a distorted rectangle with no redox peaks. The cell charge storage mechanism is explored to be the electric double layer (EDLC) in nature. The maximum specific capacitance exhibited by the cell is nearly 4.4 F/g at a scan rate of 3 mV/s. The energy and power densities delivered by the same cell are equal to 27.7�W h kg?1 and 9972 W kg?1, respectively, which sustain for 100 cycles. The results of the designed cell reveal that both blend polymer composite electrolyte films and the composite electrode can be implemented to be used for EDLC supercapacitor. � 2022 John Wiley & Sons Ltd.Item High efficient carbon coated TiO2electrode for ultra-capacitor applications(IOP Publishing Ltd, 2021-10-08T00:00:00) Tanwar, Shweta; Arya, Anil; Singh, Nirbhay; Yadav, Bal Chandra; Kumar, Vijay; Rai, Atma; Sharma, A.L.The present paper reports the investigation of structural, optical, chemical bonding, and electrical properties of the carbon black (CB)/TiO2 composite synthesized via the standard sol-gel method. The structural and morphological properties have been investigated using x-ray diffraction and also field emission scanning electron microscopy to confirm the formation of the nanocomposite. The electrochemical performance of the two-electrode symmetric fabricated supercapacitor (SC) has been examined by complex impedance spectroscopy, cyclic voltammetry, and galvanostatic charge-discharge (GCD). The electrode CT15 (15% TiO2 in CB matrix) shows a high specific capacitance of 236 F g-1 at scan rate 10 mV s-1. The GCD illustrates good specific capacitance retention of 90.3% after 10 000 cycles and with energy density and power density values as 22 Wh kg-1 and 625 kW kg-1 respectively (at 1 A g-1) in the voltage window of 1.2 V. The CT15 electrode cell demonstrates superior electrochemical performance as compared to other electrodes. Electrochemical impedance spectroscopy (EIS) demonstrates the capacitive behaviour of the composite electrode with a low value of resistance. The SC cell having optimum performance has been chosen to demonstrate the glowing red light emitting diode. A mechanism has also been proposed based on received data parameters to validate the SC performance. � 2021 IOP Publishing Ltd.Item Transition metal dichalcogenide (TMDs) electrodes for supercapacitors: A comprehensive review(IOP Publishing Ltd, 2021-04-24T00:00:00) Tanwar, Shweta; Arya, Anil; Gaur, Anurag; Sharma, A.L.As globally, the main focus of the researchers is to develop novel electrode materials that exhibit high energy and power density for efficient performance energy storage devices. This review covers the up-to-date progress achieved in transition metal dichalcogenides (TMDs) (e.g. MoS2, WS2, MoSe2, and WSe2) as electrode material for supercapacitors (SCs). The TMDs have remarkable properties like large surface area, high electrical conductivity with variable oxidation states. These properties enable the TMDs as the most promising candidates to store electrical energy via hybrid charge storage mechanisms. Consequently, this review article provides a detailed study of TMDs structure, properties, and evolution. The characteristics technique and electrochemical performances of all the efficient TMDs are highlighted meticulously. In brief, the present review article shines a light on the structural and electrochemical properties of TMD electrodes. Furthermore, the latest fabricated TMDs based symmetric/asymmetric SCs have also been reported. � 2021 IOP Publishing Ltd.Item Polymer Electrolytes: Development and Supercapacitor Application(wiley, 2021-03-26T00:00:00) Arya, Anil; Gaur, Anurag; Sharma, A.L.Due to the increasing demand for energy globally and the reduction of the traditional energy sources, the development of an efficient and sustainable energy source has grabbed the attention of researchers. So, supercapacitor (SC) is a crucial energy storage device that has gained attention in the energy sector. One important part of any SC cell is the electrolyte. The electrolyte plays an important role in the ion migration in the device between electrodes. Hence, polymer electrolytes are fascinating candidates and fulfil the need due to better mechanical properties and ion dynamics. Consequently, the present chapter will start with a brief introduction to supercapacitors, followed by characteristics of electrolyte, types and modification strategies for the electrolyte. Further, the important preparation techniques and advanced characterization techniques are briefed. Finally, some important developments made using the polymer electrolytes for SC cell are presented (publications and patents). � 2021 Scrivener Publishing LLC.