Department Of Physics
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/57
Browse
3 results
Search Results
Item Magnetic Ferrites-Based Hybrids Structures for the Heavy Metal Removal(Springer Science and Business Media Deutschland GmbH, 2021-10-29T00:00:00) Abbas, Muhammad Khawar; Yasin, Effat; Sajid, Muhammad Munir; Shad, Naveed Akhtar; Akhtar, Kanwal; Manhas, Anita; Sharma, Surender K.; Javed, YasirAdsorption is a major process for heavy metal removal and the research trend is focused toward the applications of new technologies in order to intensify the already existing processes. Intrinsic properties of magnetic materials (arrangement and surface-to-volume ratio) of adsorbate and adsorbent are critical for satisfactory results. Magnetic field strength plays an important role as it indicates the alignment of spins with the magnetic field to provide adsorbate mobility and generate heterogeneity at adsorbent surface. Applications of magnetic field for intensification of adsorption process provide environment friendly, safe and economic alternative. This chapter describes different types of magnetic ferrites-based hybrids for heavy metal removal. Surface modification of magnetic nanohybrids through different surface modification strategies and general adsorption mechanisms for different types of pollutants are discussed comprehensively. Major thrust of this chapter is to provide information about different features of magnetic ferrites for their potential application as adsorbent for heavy metal removal. � 2021, Springer Nature Switzerland AG.Item Low Loss Soft Ferrites Nanoparticles for Applications Up to S-band(Springer Science and Business Media Deutschland GmbH, 2021-10-29T00:00:00) Sharma, Sucheta; Verma, Ramesh; Singh, Mahavir; Sharma, Surender K.This chapter aims at providing a better understanding of soft ferrites and their role in ultra-high-frequency applications. In wireless communication industry trends of miniaturized, highly efficient and wide-band antenna become the new research areas of the antenna technology. Antenna miniaturization cannot be achieved by simply changing the structural design, and it is important to improve the material characteristics of antenna substrates. Furthermore, to improve the antenna efficiency, almost matched permittivity and permeability values and low magnetic as well as dielectric loss tangents are required especially at ultra-high frequency (UHF), L-band, and S-band frequency range. For efficiency improvement and miniaturization of antennas, magneto-dielectric materials have significant advantages with matching permittivity and permeability values along with sufficiently low magnetic and dielectric loss tangents. Ferrites with very high resistance have been reported as the best host materials to produce low loss magneto-dielectric materials for high-frequency antenna applications as they present moderate permeability and permittivity values. In this chapter, the emphasis is given on the soft ferrites Mn�Zn, Ni�Zn spinel ferrite, and Co2Z type barium hexaferrite. The chapter also explains the effect of substitution of different dopant ions on the properties of soft ferrites. � 2021, Springer Nature Switzerland AG.Item Progress in Ferrites Materials: The Past, Present, Future and Their Applications(Springer Science and Business Media Deutschland GmbH, 2021-10-29T00:00:00) Manhas, Anita; Singh, Mahavir; Hussain, Muhammad Irfan; Javed, Yasir; Sharma, Surender K.Ferrite is a magnetic substance consist essentially of an oxide of iron combined with one or more other metals such as manganese, copper, nickel, or zinc. They are being routinely utilized especially in electronic devices owing to its good magnetic properties along with high resistivity. � 2021, Springer Nature Switzerland AG.