Department Of Physics
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/57
Browse
2 results
Search Results
Item Plasmonic Solar Cells(wiley, 2021-08-06T00:00:00) Shiyani, T.; Mahapatra, S.K.; Banerjee, I.Photovoltaic (PV) cell is a fundamental solar energy conversion device that converts light energy into electric energy. The light absorption and charge recombination are main limiting factors on the efficiency of PV cell or solar cell. A limited efficiency of PV devices makes them less effective in market for clean energy production. Various tactics and methods are demonstrated to enhance the solar cell performance. Metallic nanoparticles have been utilized to fabricate solar cells because of its novel properties such as large surface to volume ratio and surface plasmon resonance (SPR). Plasmonic nanostructures can influence the absorption of light through scattering of surrounding molecules or particles. The plasmonic nanostructures can scatter or concentrate light at subwavelength scale for increasing absorption in active layer and hence enhancing the efficiency of PV devices. Therefore, the plasmonic nanostructures are promising candidates to develop high efficiency solar cells. We discuss about the fundamental mechanisms, ability to scale up the plasmonic with tailored optical properties, solar cell design, and recent advancements in plasmonic solar cells to generate clean energy and solar fuels. � 2021 Scrivener Publishing LLC.Item Flexible zinc oxide photoelectrode for photo electrochemical energy conversion(Springer, 2021-05-18T00:00:00) Shiyani, T.; Banerjee, I.; Mahapatra, Santosh K.; Ray, Asim K.Photoelectrochemical properties have been investigated for flexible photoelectrodes containing 310�nm thick ZnO film on spin-coated ITO/PET. The high crystalline structure of ZnO was studied using x-ray diffraction pattern. A value of 3.4�eV has been estimated for optical band gap from its absorption spectra. The flexible ZnO photoelectrode was demonstrated to generate photoelectrochemical current. The photocurrents are enhanced by 4% whereas flat-band potential is shifted by 8�V due to the illumination. Values of 1.022 and 0.714 AW?1 were found to be for photo switching and photoresponsivity, respectively. ZnO/ITO/PET can be used as a substrate for making flexible hybrid PEC devices to generate solar power and solar fuels. � 2021, This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply.