Department Of Physics
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/57
Browse
2 results
Search Results
Item Fabrication of activated carbon coated MSe2 (M=Mo, Co, and Ni) nanocomposite electrode for high-performance aqueous asymmetric supercapacitor(Elsevier B.V., 2023-03-09T00:00:00) Tanwar, Shweta; Singh, Nirbhay; Sharma, A.L.Transition metal diselenides are trendy electrode materials for supercapacitors. The main reason behind it is their high specific capacitance. But, they suffer from poor electronic conductivity and agglomeration issues which hinder their practical use. Herein, we present the preparation of nanocomposites including transition metal diselenide MSe2 (M=Mo, Co, and Ni) with activated carbon using the facial hydrothermal route. Inspiring from the high electrochemical results of a hybrid nanocomposites symmetric cell, an aqueous asymmetric ultracapacitor cell (AUC) comprised of different shaped carbon-coated MSe2 (positive electrode) as well as activated carbon (AC) (negative electrode) has been fabricated. The NAC//6KOH//AC asymmetric cell displays the best outcomes among all fabricated devices. The specific capacitance observed is about 3740 F g?1 at 10 mV s?1. It delivers a high energy density of 69 Wh kg?1 along with a power density of 687 W kg?1 at 1 A g?1. The electrochemical results motivate us to explore the practical usability of the prepared NAC//6KOH//AC device via illuminating 26 red LED panels which glow for 26 min. The findings in this report indicate that MSe2-based nanocomposite has the scope and is a potential material in the energy storage field. � 2023 Elsevier B.V.Item Structural, Electrical and Electrochemical Properties of Fe Doped Orthosilicate Cathode Materials(Springer Nature, 2021-12-02T00:00:00) Singh, Nirbhay; Kanwar, Komal; Tanwar, Shweta; Sharma, A.L.; Yadav, B.C.We report the paper related to the effect of Fe doping on the Li2FexMn1?xSiO4 (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5) cathode materials synthesized by Sol-Gel technique. X-Ray Diffraction evidences the monoclinic structure with space group Pn(7) and crystal size decreases from 43 to 35�nm on doping Fe in Li2MnSiO4. Field emission scanning electron microscopy (FESEM) confirms that particle size reduces from 60 to 21�nm with increase of Fe concentration. The impedance analysis shows that highest electrical conductivity was 4.5 � 10�5 Scm?1 for Li2Fe0.4Mn0.6SiO4 cathode material. The initial specific capacity was 152 mAhg?1 at the rate of 0.1 C and 131 mAhg?1 after the 50th cycle with 86% capacity retention. The doping of Fe enhanced the conductivity by reducing its charge transfer resistance and increasing Li-ion diffusion coefficient than the pure Li2MnSiO4 cathode material. � 2022, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.