Department Of Physics
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/57
Browse
4 results
Search Results
Item Recent advances in 2D anode materials for Na-ion batteries from a theoretical perspective(Taylor and Francis Ltd., 2023-11-02T00:00:00) Verma, Nidhi; Jamdagni, Pooja; Kumar, Ashok; Srivastava, Sunita; Tankeshwar, K.Na-ion batteries (SIBs) are a promising replacement for lithium-ion batteries (LIBs) for low-cost and large-scale energy storage systems in the forthcoming years after additional in-depth examination and investigation. A significant part of the development of innovative anode materials and their in-depth understanding has come through simulations. Ab initio simulations based on density functional theory (DFT) have been proven to be a reliable, efficient, and cost-effective way to design new anode materials for SIBs. As a result of the identification of graphene, researchers and scientists were influenced to create new two-dimensional (2D) materials. On account of their distinctive physical and chemical properties, the broad expanse of surface, innovative electronic features, and charging ability of 2D materials attract much attention. Many of these characteristics are significant prerequisites for using anodes in batteries. Herein, based on recent research progress, we have reviewed the structures and electrochemical properties of 2D materials as anode for Na-ion batteries from a theoretical perspective. The effective methodologies for high-performance anode materials are provided based on the substantial literature and theoretical studies. Added to that, we have also explored the various techniques such as heterostructure, doping, defect- and strain-engineering of 2D materials for the improvement of the performance of these materials as anodes for SIBs. � 2023 Taylor & Francis Group, LLC.Item Photocatalytic properties of anisotropic ?-PtX2 (X = S, Se) and Janus ?-PtSSe monolayers(Royal Society of Chemistry, 2022-09-01T00:00:00) Jamdagni, Pooja; Kumar, Ashok; Srivastava, Sunita; Pandey, Ravindra; Tankeshwar, K.The highly efficient photocatalytic water splitting process to produce clean energy requires novel semiconductor materials to achieve a high solar-to-hydrogen energy conversion efficiency. Herein, the photocatalytic properties of anisotropic ?-PtX2 (X = S, Se) and Janus ?-PtSSe monolayers were investigated based on the density functional theory. The small cleavage energy for ?-PtS2 (0.44 J m?2) and ?-PtSe2 (0.40 J m?2) endorses the possibility of mechanical exfoliation from their respective layered bulk materials. The calculated results revealed that the ?-PtX2 monolayers have an appropriate bandgap (?1.8-2.6 eV) enclosing the water redox potential, light absorption coefficient (?104 cm?1), and exciton binding energy (?0.5-0.7 eV), which facilitates excellent visible-light-driven photocatalytic performance. Remarkably, the inherent structural anisotropy leads to an anisotropic high carrier mobility (up to ?5 � 103 cm2 V?1 S?1), leading to a fast transport of photogenerated carriers. Notably, the required small external potential to realize hydrogen evolution reaction and oxygen evolution reaction processes with an excellent solar-to-hydrogen energy conversion efficiency for ?-PtSe2 (?16%) and ?-PtSSe (?18%) makes them promising candidates for solar water splitting applications. � 2022 The Royal Society of Chemistry.Item Pressure and electric field tuning of Schottky contacts in PdSe2/ZT-MoSe2 van der Waals heterostructure(Institute of Physics Publishing, 2020) Jakhar, M; Singh, J; Kumar, A; Tankeshwar, K.A two-dimensional van der Waals (vdW) heterostructure (PdSe2/ZT-MoSe2) has been investigated through vdW corrected density functional theory. ZT-MoSe2 acts as a Dirac material with an anisotropic Dirac cone and variable Fermi velocity (0.52-1.91 105 ms-1). The intrinsic Schottky barrier height can be effectively tuned by applying external pressure and an electric field to the heterostructure. The p-type Schottky barrier transforms into a p-type ohmic contact at pressure P ? 16 GPa. A positive electric field induces p-type ohmic contact while a negative electric field results in the transition from p-type Schottky contact to n-type Schottky contact, and finally to n-type ohmic contact at the higher values of the field. Moreover, the external positive (negative) electric field induces n-type (p-type) doping of ZT-MoSe2 in the heterostructure and remarkably controls the charge carrier concentration. Our results demonstrate that controlling the external pressure and electric field in a PdSe2/ZT-MoSe2 heterostructure can result in an unprecedented opportunity for the design of high-performance nanodevices. � 2020 IOP Publishing Ltd.Item Electronic structure and simulated STM images of non-honeycomb phosphorene allotropes(American Institute of Physics Inc., 2018) Kaur, S.; Kumar, A.; Srivastava, S.; Tankeshwar, K.We have investigated the electronic structure and simulated STM images of various non-honeycomb allotropes of phosphorene namely ? - P, ? - P, ? - P and ? - P, within combined density functional theory and Tersoff-Hamman approach. All these allotropes are found to be energetically stable and electronically semiconductingwith bandgap ranging between 0.5-1.2 eV. Simulated STM images show distinctly different features in terms of the topography. Different maximas in the distance-height profile indicates the difference in buckling of atoms in these allotropes. Distinctly different images obtained in this study may be useful to differentiate various allotropes that can serve as fingerprints to identify various allotropes during the synthesis of phosphorene. ? 2018 Author(s).