Department Of Physics

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/57

Browse

Search Results

Now showing 1 - 1 of 1
  • Item
    X-band Scattering Characteristics of Nickel/Nanocarbon Composites for Anti-tracking Application
    (John Wiley and Sons Inc, 2021-10-16T00:00:00) Alegaonkar, Ashwini P.; Tripathi, Krishna C.; Baskey, Himangshu B.; Pardeshi, Satish K.; Alegaonkar, Prashant S.
    Creating clutter in high resolution seeking trackers is of tactical importance which could be achieved by the electromagnetic interference (EMI) shielding. Herein, we report on X-band (8�12 GHz) scattering performance of nickel/nano-carbon-composites for architecting an effective EMI shield. Composite material is prepared by facile, one step, solid state combustion technique with variable 1�5 Ni % and characterized using x-ray diffractometry, infrared-,uv-visible, energy dispersive x-ray spectroscopic techniques, and scanning electron microscopy. Further, composite, transformed into coaxial and rectangular shaped specimens, are subjected to s-parameter and reflection loss studies, respectively, over 8�12 GHz. In analysis, incorporation of Ni, majorly, forms crystalline NiO (d[111]) and Ni2O3 (d[002]) phases dispersed within the nanocarbon network which are responsible to create asymmetric stretching bond between Ni?O?C ((Formula presented.) ?1130 cm?1). Dispersion facilitates synergistic magneto-dielectric coupling to provide long range ordering of polarization, mainly, via electronic transitions between Ni?3d to O?2p states to engage incident microwave power effectively. At highest Ni inclusion, composite showed>95 % shielding effectiveness with infinite bandwidth and>99 % return loss@8.97 GHz matching frequency. � 2021 Wiley-VCH GmbH