Department Of Physics
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/57
Browse
11 results
Search Results
Item Theoretical investigation of quantum capacitance of Co-doped ?-MnO2 for supercapacitor applications using density functional theory(Royal Society of Chemistry, 2023-09-07T00:00:00) Vijayan, Ariya K.; Sreehari, M.S.; Kour, Simran; Dastider, Saptarshi Ghosh; Mondal, Krishnakanta; Sharma, A.L.The rapid depletion of fossil fuels and ever-growing energy demand have led to a search for renewable clean energy sources. The storage of renewable energy calls for immediate attention to the fabrication of efficient energy storage devices like supercapacitors (SCs). As an electrode material for SCs, MnO2 has gained wide research interest because of its high theoretical capacitance, variable oxidation state, vast abundance, and low cost. However, the low electric conductivity of MnO2 limits its practical application. The conductivity of MnO2 can be enhanced by tuning the electronic states through substitution doping with cobalt. In the present work, first principles analysis based on density functional theory (DFT) has been used to examine the quantum capacitance (CQC) and surface charge (Q) of Co-doped MnO2. Doping enhanced the structural stability, electrical conductivity, potential window, and quantum capacitance of ?-MnO2. The shortened band gap and localized states near the Fermi level improve the CQC of ?-MnO2. For the narrow potential range (?0.4 to 0.4 V), the CQC is observed to increase with doping concentration. The highest CQC value at +0.4 V is observed to be 2412.59 ?F cm?2 for Mn6Co2O16 (25% doping), five times higher than that of pristine MnO2 (471.18 ?F cm?2). Mn6Co2O16 also exhibits better CQC and �Q� at higher positive bias. Hence, it can be used as an anode material for asymmetric supercapacitors. All these results suggest better capacitive performance of Co-doped ?-MnO2 for aqueous SCs and as an anode material for asymmetric supercapacitors. � 2023 The Royal Society of Chemistry.Item All-redox hybrid supercapacitors based on carbon modified stacked zinc cobaltite nanosheets(Royal Society of Chemistry, 2023-09-12T00:00:00) Kour, Simran; Kour, Pawanpreet; Sharma, A.L.The role of energy in the present century has increased with the fast advancement of the global economy. In this regard, hybrid supercapacitors (HSCs) as energy storage systems have become an extensive research focus worldwide. This study reports the synthesis of carbon-loaded ZnCo2O4 stacked nanosheets via an in situ hydrothermal process followed by annealing. The electrochemical response was tested in a 2-electrode system. The optimized composite exhibited a capacitance of ?527.6 F g?1 at 5 mV s?1. The symmetric SC (SSC) possessed an energy density (Ed) of ?17.3 W h kg?1 corresponding to a power density (Pd) of 2.25 kW kg?1. Two asymmetric all-redox HSCs have also been fabricated using an optimized composite material as the positive electrode. The previously synthesized MnCo2O4/AC (HSC1) and MnO2/AC (HSC2) were taken as negative electrodes. HSC1 exhibited an Ed of ?24.4 W h kg?1 corresponding to a Pd of ?0.8 kW kg?1. On the other hand, HSC2 exhibited the highest Ed of ?30.8 W h kg?1 at 2.4 kW kg?1. The real-time application of the composite is tested with the fabricated HSCs. HSC1 exhibited a capacitive retention of ?72.2% after 10 000 cycles. On the other hand, HSC2 exhibited a capacitive retention of ?73.4% after 10 000 cycles. The SSC, HSC1, and HSC2 illuminated a 39 red LED panel for ?3 min, 7 min, and 13 min, respectively. The results suggested the promising performance of all-redox HSCs. The overall results present a sustainable approach for creating hierarchical energy materials for the construction of future energy-storage systems. � 2023 The Royal Society of Chemistry.Item Insight into use of biopolymer in hybrid electrode materials for supercapacitor applications�A critical review(American Institute of Physics Inc., 2023-05-12T00:00:00) Tanwar, Shweta; Sharma, A.L.The shortage of natural resources due to the progression of the human population and environmental pollution has become crucial concern topics to resolve. One of the best ways to resolve this is to develop renewable energy-based storage systems. Supercapacitors are emerging as promising storage systems via providing rapid charging/discharging and high power delivery, but there is a need to explore low-cost, environment-friendly, non-toxic, abundant, and biodegradable electrode materials for supercapacitors. In this regard, biopolymers are observed to be popular for storage applications as they are of high porosity, cost-effective, easily available, low-weight, and environment friendly and have biodegradability properties. The biopolymer-based electrode has a desirable morphology and high surface area and exhibits admirable electrochemical properties. The focus of this report is to highlight (i) the inclusive details of supercapacitors and their types along with strategies to improve their electrochemical performance, (ii) biopolymers and their types used for supercapacitor applications, (iii) various synthesis routes that could be adopted for designing electrode materials based on biopolymers for supercapacitors, and (iv) challenges and future scope of biopolymers as the electrode material in supercapacitor applications. The detailed study here in this report is found to be a topic of interest for the scientific community to fabricate and prepare low-cost, eco-friendly, high electrochemical performance exhibiting electrode materials for supercapacitor applications. � 2023 Author(s).Item High-performance symmetric supercapacitor based on activated carbon-decorated nickel diselenide nanospheres(Springer, 2022-11-11T00:00:00) Tanwar, Shweta; Singh, Nirbhay; Sharma, A.L.The vital challenge is to advance the electronic conductivity of the transition metal diselenide for their supercapacitor application. In this report, nickel diselenide nanospheres and their decoration by activated carbon are reported by a one-step, surfactant-free hydrothermal technique. The activated carbon-decorated NiSe2 nanospheres (NAC) electrode displays high electrochemical performance than pure NiSe2 nanospheres due to more active sites, enhanced conductivity, and reduced diffusion path of electrons and electrolyte ions for maximum energy storage. The NAC electrode depicts a specific capacity of about 119 C g?1 at 0.3 A g?1. The fabricated symmetric supercapacitor using an NAC electrode shows a high specific capacitance of about 282 F g?1 at 10�mV�s?1. The cycle stability of 70% for ten thousand cycles is exhibited for the fabricated symmetric supercapacitor. It manifests high specific energy of 28�W�h�kg?1 and specific power of value 980�W�kg?1 at 1 A g?1. Device applicability with load is tested at laboratory scale by glowing different color LEDs, and a panel of 26 red LEDs illuminated for 56�min effortlessly. A self-explanatory mechanism has also been proposed to make it easier to realize the readers about glowing LEDs, and their panels. � 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.Item Mesoporous carbon/titanium dioxide composite as an electrode for symmetric/asymmetric solid?state supercapacitors(Elsevier Ltd, 2022-08-27T00:00:00) Arya, Anil; Iqbal, Muzahir; Tanwar, Shweta; Sharma, Annu; Sharma, A.L.; Kumar, VijayThis paper reports the successful synthesis of mesoporous carbon/titanium dioxide (MC/TiO2) composite electrodes via the hydrothermal method for supercapacitor (SC) applications. The morphology and structural properties of MC/TiO2 composites were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectra (FTIR). The electrochemical properties were recorded by cyclic voltammetry (CV) and galvanostatic charge/discharge (GCD) with an electrolyte (6 M KOH) in symmetric/asymmetric configuration. The specific capacitance (Cs) evaluated by CV is about 280F/g for composite electrode (95 % capacitance retention after 1000 cycles) and pristine has 150F/g @ 10 mV/s. Enhancement in capacitance is owing to faster charge dynamics within electrode material. The fabricated asymmetric device demonstrates high energy density (30.31 Wh/kg), than the symmetric configuration (?27 Wh/kg). Finally, both symmetric/asymmetric supercapacitors have illuminated a red LED, and strengthens the candidature of composite electrode for energy storage technology. � 2022 Elsevier B.V.Item Electrochemical performance of mixed-phase 1T/2H MoS2 synthesized by conventional hydrothermal v/s microwave-assisted hydrothermal method for supercapacitor applications(Elsevier Ltd, 2022-07-05T00:00:00) Kour, Pawanpreet; Deeksha; Yadav, KamleshMixed-phase 1T/2H MoS2 has been receiving immense attention as an electrode material for supercapacitors due to the synergistic effects of both the phases. Herein, we synthesized mixed-phase 1T/2H MoS2 via two different techniques: conventional hydrothermal (HT) and microwave-assisted hydrothermal (MHT) technique. The formation of MoS2 is confirmed through X-ray diffraction pattern, scanning electron microscopy, energy dispersive X-ray spectroscopy, Raman-spectra, and X-ray photoelectron spectra. The electrochemical performance of the two samples is investigated using cyclic voltammetry (CV), Gravimetric charging-discharging (GCD) and electrochemical impedance spectroscopy (EIS). MoS2 synthesized via MHT method (MS-MW) and HT method (MS-HT) deliver capacitances of 421 F g?1 and 742 F g?1 at 5 mV s?1, respectively. The energy density of MS-HT (57 Wh kg?1) is almost double than that of MS-MW (30 Wh kg?1). MS-HT also exhibited remarkable capacitance retention of 91% over 1200 cycles, compared with MS-MW. The results demonstrate that MoS2 synthesized by the hydrothermal method delivers superior electrochemical performance. � 2022 Elsevier B.V.Item MnO2 nanorod loaded activated carbon for high-performance supercapacitors(Elsevier Ltd, 2022-03-31T00:00:00) Kour, Simran; Tanwar, Shweta; Sharma, A.L.Nowadays, transition metal oxides (TMOs) have gained much attention as potential candidates for supercapacitors owing to their remarkable properties for instance vast abundance, a high value of theoretical capacitance, easy accessibility, and eco-friendly nature. But low electric conductivity of TMOs restrains them from reaching their theoretically predicted value for capacitance. Activated carbon with enormous surface area and excellent conductivity has been chosen to augment the conductivity of TMO-based electrodes. Here in this paper, we have synthesized MnO2 nanorods via a facile hydrothermal process. These nanorods have been loaded onto activated carbon via a straight-forward sol-gel approach at room temperature. The obtained nano-composite exhibited superior capacitance of 398.5 F g?1 at 1 A g?1 than MnO2 (161.8 F g?1). The composite attained excellent energy of 105.2 Wh kg?1 (at 2 kW kg?1). Further, the composite was tested for device application. Three symmetric supercapacitor cells joined in series were proficient to glow a blue LED for about one minute while the red LED was illuminated for about 12 min. This suggested that the composite material has broad potential applicability as supercapacitor electrode material. � 2022 Elsevier B.V.Item Synergistically modified WS2@PANI binary nanocomposite-based all-solid-state symmetric supercapacitor with high energy density(Royal Society of Chemistry, 2022-03-09T00:00:00) Iqbal, Muzahir; Saykar, Nilesh G.; Alegaonkar, Prashant S.; Mahapatra, Santosh K.The rapid development of intelligent, wearable, compact electronic equipment has triggered the need for durable, flexible, and lightweight portable energy storage devices. Nanomaterials that are capable of delivering the high specific power density and commensurate energy density are potential candidate for realizing such devices. Herein, we report the facile synthesis of a binary nanocomposite WS2@PANI by utilizing hydrothermal and physical blending techniques to assess it as an electrode material for high-performance supercapacitors. The nanocomposite electrode delivered specific capacitance >335 F g?1 @ 10 mV s?1 (two-electrode), achieving energy and power densities of ?80 W h kg?1 and ?800 W kg?1, respectively, with capacitance retention of 83% even after 5000 charge-discharge cycles @ 10 A g?1, all of which are superior to the WS2 electrode. Dunns model quantifies capacitive and intercalative contributions that showed the cumulative effect of both to realize a robust, cost-effective, and energy-efficient device. The strategically incorporated PANI broadened the electrochemical window and the device's overall performance, resulting in high specific energy density. We demonstrated that our all-solid-state symmetric supercapacitor could be used to illuminate a light-emitting diode and drive a rotary motor. We believe that our WS2@PANI binary nanocomposite will be a potential candidate for energy storage devices. � 2022 The Royal Society of ChemistryItem Fabrication of energy storage EDLC device based on self-synthesized TiO2 nanowire dispersed polymer nanocomposite films(Springer Science and Business Media Deutschland GmbH, 2021-05-24T00:00:00) Devi, Chandni; Swaroop, Ram; Arya, Anil; Tanwar, Shweta; Sharma, A.L.; Kumar, SandeepIn this work, a systematic study of titanium oxide (TiO2) nanowires incorporated polymer nanocomposite (PNC) films prepared by a standard solution cast technique is reported. The structural, morphological, dielectric, and electrochemical properties were investigated thoroughly. The polymer nanocomposite films demonstrated improved electrical and electrochemical properties as compared to polymer�salt complex film. The morphological and structural properties have been examined by the field emission scanning electron microscope, Fourier transform infrared spectroscopy, and X-ray diffraction. It is observed that the maximum ionic conductivity is of the order of 10�5 S cm?1 exhibited by 0.5 wt% nanowire added polymer nanocomposite film. The ion transference number was close to unity for optimized film and stability window of about ~ 5�V. The shift of loss tangent peak toward the high-frequency window with nanowire addition indicates a decrease of the relaxation time. The optimized TiO2 nanowire dispersed polymer nanocomposite film has been used to fabricate the electric double-layer capacitor cells. The fabricated cell demonstrates the specific capacitance of about 57.5 F/g (at 10�mV/s). The calculated energy density and power density are 1.38 Wh kg?1 and 0.709�kW�kg?1, respectively. The Coulombic efficiency is 97.7% up to the 500 cycles for the fabricated cell. The prepared polymer nanocomposite has the potential to use it as electrolyte cum separator for solid-state electric double-layer capacitor applications. � 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.Item High-performance supercapacitor based on MoS2@TiO2 composite for wide range temperature application(Elsevier Ltd, 2021-06-07T00:00:00) Iqbal, Muzahir; Saykar, Nilesh G.; Arya, Anil; Banerjee, Indrani; Alegaonkar, Prashant S.; Mahapatra, S.K.Transition metal sulphide and their composites gain attention as electrode material in energy storage devices due to their superior properties like excellent conductivity, high surface area, and porosity. We report an evaluation of the electrochemical performance of MoS2@TiO2 binary composite in symmetric supercapacitor assembly at different temperatures. A facile hydrothermal technique is used to prepare MoS2@TiO2 binary composite. Structural and morphological analysis reveals that highly crystalline composite comprising MoS2 assembled in flower-like flake configuration, whereas, TiO2 in nanorods form are prepared. Among all three electrodes, MoS2@15%TiO2 demonstrates maximum specific capacitance 210 F/g at 10 mV/s with excellent cycling stability (98%, 2000 cycles) at ambient temperature. It may be concluded that the mono-phased, mesoporous structure is a key feature behind the improved performance over the other electrodes. Further, improvement in charge-discharge characteristics has been observed by a factor of 200% at 60 �C attributing to low activation energy and faster ion dynamics at elevated temperatures. The impedance spectroscopic analysis reveals a significant reduction in interfacial impedances that leads to a superior capacitance effect compounded with favourable electrolytic charge dynamics. The highest energy density is reported to be 21 Wh/kg with a power density of 1300 W/kg in symmetric configuration. Synergistic effect of the binary system along with unique surface morphology and charge storage followed by intercalation and capacitive mechanism results in enhanced performance of supercapacitor with MoS2@15%TiO2. Thus, binary MoS2@TiO2 composite seems to be an exceptional candidate for the energy storage device operating at a wide temperature range (25�60 �C). � 2021 Elsevier B.V.