Department Of Physics
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/57
Browse
8 results
Search Results
Item Study of Compatible Anode for Silicate-Based Cathode Material(Springer Science and Business Media Deutschland GmbH, 2023-05-21T00:00:00) Pateriya, Ravi Vikash; Tanwar, Shweta; Sharma, A.L.In the present paper, we have discussed the compatibility of suitable anode material with synthesized Li2MnSiO4 cathode material. The Li2MnSiO4 cathode material was synthesized by hydrothermal technique. The structural and electrochemical analysis were done by XRD, FTIR, and electrochemical measurement by cell assembly taking different materials as the anode. Cyclic voltammetry results show that cell prepared with Li2MnSiO4 as cathode and activated carbon as anode delivered a specific capacity of 53.07 mAh g?1 and graphite specific capacity of 10.21 mAh g?1 was calculated. Charge transfer resistance (Rct) of 6 and 7 ? were observed for cell with activated carbon and graphite anode respectively. Initial discharge capacity for activated carbon as an anode was recorded to be 70.54 and 3.97 mAh g?1 for anode with graphite. The results associated with activated carbon and Li2MnSiO4 as anode and cathode material appear to be compatible materials in Li-ion battery application. � 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.Item Investigation of Structural and Electrochemical Properties for Orange Peel Derived Carbon(Springer Science and Business Media Deutschland GmbH, 2023-05-21T00:00:00) Simple; Kushwaha, K.K.; Tanwar, Shweta; Sharma, A.L.From this study, we get to know about the concentration effect of activating agent which is phosphoric acid (H3PO4) on the structural, and electrochemical behaviour of carbon produced from orange peel. We have taken various concentrations of H3PO4 (0.5�M, 1�M, 1.5�M) and activated the orange peel-derived carbon (OPC) followed by sintering in the furnace. The structural and chemical nature is analyzed by performing powder x-ray diffraction (XRD) and Fourier-transform infrared (FTIR) tools. The electrochemical measurements are also done via cyclic voltammetry (CV), galvanostatic charge�discharge (GCD), and electrochemical impedance spectroscopy (EIS) techniques. At scan rate of 20�mV�s?1we discovered that sample named 1�M possess the greatest specific capacitance value of 5.55 F g?1. At the current density of 1 A g?1 specific energy is 0.189 Wh Kg?1 and specific power is 486.8 W Kg?1. As a result, raising the concentration of the solution from 0.5 to 1�M, there is a rise in electrochemical behavior but as we go from 1 to 1.5�M fall in the behavior is seen. The reason behind this is that in higher concentrations the specific area of the electrode for the ions to get accommodated decreases due to an increase in micropores. So, 1�M of 85% (w/v) H3PO4 will be a promising candidate for activating the orange peel-derived carbon (OPC) to obtain enhanced electrochemical performance for energy storage applications. � 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.Item Economic and environment friendly carbon decorated electrode for efficient energy storage devices(Elsevier Ltd, 2023-04-26T00:00:00) Singh, Nirbhay; Tanwar, Shweta; Sharma, A.L.; Yadav, B.C.The most dependent storage technologies are secondary batteries and supercapacitors. Supercapacitors are more competent regarding faster energy supply, sustainability, and high-capacity retaining. However, in supercapacitors, most research comprises the least abundant materials that raise the cost and toxicity, which are unfavorable to the environment. Therefore, we have prepared activated carbon-based earth-abundant iron oxyhydroxide material via a low-temperature hydrothermal technique. The key finding of this research is sustainable materials, with co-related studies of TEM and GCD cyclic stability (pre and post-cycling characterizations up to 10k). The X-ray photoelectron spectroscopy analysis reveals the elemental composition of the optimized sample. The electrochemical performance has been tested via galvanostatic charge-discharge analysis, electrochemical impedance spectroscopy, and cyclic voltammetry. The cyclic stability evaluation is done to see the lasting usability of the device for the 10,000th number of charging-discharging cycles, which is supported by electrochemical impedance spectroscopy results in form of a Nyquist plot. The galvanostatic charge-discharge analysis revealed the specific capacitance of 372 F g?1 at 2 mA. The specific energy and power density were obtained as 40 Wh kg?1 and 4200 W kg?1, respectively. The ACF1 shows Coulombic efficiency and capacity retention as 96 % and 80 %, respectively, up to 10k cycles. We have proposed a charge storage mechanism for the fabricated electrode. A supercapacitor has been made-up and tested for the glow of LED, and the device can glow LED for 20 min. The device was repeated after two months and reproduced the LED glow for the same duration. � 2023 Elsevier LtdItem High-performance symmetric supercapacitor based on activated carbon-decorated nickel diselenide nanospheres(Springer, 2022-11-11T00:00:00) Tanwar, Shweta; Singh, Nirbhay; Sharma, A.L.The vital challenge is to advance the electronic conductivity of the transition metal diselenide for their supercapacitor application. In this report, nickel diselenide nanospheres and their decoration by activated carbon are reported by a one-step, surfactant-free hydrothermal technique. The activated carbon-decorated NiSe2 nanospheres (NAC) electrode displays high electrochemical performance than pure NiSe2 nanospheres due to more active sites, enhanced conductivity, and reduced diffusion path of electrons and electrolyte ions for maximum energy storage. The NAC electrode depicts a specific capacity of about 119 C g?1 at 0.3 A g?1. The fabricated symmetric supercapacitor using an NAC electrode shows a high specific capacitance of about 282 F g?1 at 10�mV�s?1. The cycle stability of 70% for ten thousand cycles is exhibited for the fabricated symmetric supercapacitor. It manifests high specific energy of 28�W�h�kg?1 and specific power of value 980�W�kg?1 at 1 A g?1. Device applicability with load is tested at laboratory scale by glowing different color LEDs, and a panel of 26 red LEDs illuminated for 56�min effortlessly. A self-explanatory mechanism has also been proposed to make it easier to realize the readers about glowing LEDs, and their panels. � 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.Item High-performance different shape carbon decorated asteroidea-like cobalt diselenide electrode for energy storage device(Elsevier Ltd, 2022-08-18T00:00:00) Tanwar, Shweta; Singh, Nirbhay; Sharma, A.L.Presently, the selenides-based transition metal appears to be one of the encouraging materials utilized in energy conservation, and storage applications. In this report, we presented the pure cobalt diselenide (CoSe2) and its composite with different shaped carbon using the one-step hydrothermal method. The CoSe2 with activated carbon composite exhibited the highest electrochemical performance among all prepared samples. It depicts retention of capacitance at around 80 % for 5000 cycles. A symmetric device prototype cell has been designed using a CoSe2/activated carbon composite electrode which displays the highest specific energy and power density as 83 Wh kg?1 at 1622 W kg?1. The maximum specific capacitance displayed by it is 886 F g?1 for a constant 10 mV s?1 Further, a possible charge storage mechanism related to the fabricated cell is proposed. The fabricated device application in practical life has been tested via a glowing panel containing 17 light-emitting diodes (LEDs) and its performance remains the same after six months too. The noteworthy improved capacity, good cycling stability, and high specific energy for the CoSe2 with activated carbon composite material is possibly considered a potential candidate for energy storage devices, and portable electronics. � 2022 Elsevier LtdItem Study of electrochemical performance of 3-D MnO2 nanoflowers coated with carbon for supercapacitors(Elsevier Ltd, 2022-06-07T00:00:00) Kour, Simran; Tanwar, Shweta; Sharma, A.L.Manganese dioxide has gained wide research attention as a propitious material for supercapacitors attributable to its excellent characteristics like excellent theoretical capacitance, low-price, eco-friendly nature and profound abundance. Here in this paper, we have synthesized MnO2 nanoflowers via a hydrothermal route. The supercapacitive performance of MnO2 was tested. It exhibited a specific capacitance of 73.13 F g?1 at 10 mV s?1. To further boost the electrochemical performance of MnO2 nanoflowers, they have been coated with activated carbon via a very straight-forward sol-gel approach at room temperature. The obtained nano-composite (MnO2/AC) exhibited improved capacitance of 170.68 F g?1 at 10 mV s?1. The composite was able to attain an energy density of 20.89 Wh kg?1 (at 350 W kg?1). Thus, the composite material has broad potential applicability as supercapacitor electrode material. � 2022Item Structural and electrochemical performance of carbon coated molybdenum selenide nanocomposite for supercapacitor applications(Elsevier Ltd, 2021-12-14T00:00:00) Tanwar, Shweta; Singh, Nirbhay; Sharma, A.L.Among the recent trends of supercapacitor electrode materials, transition metal dichalcogenides based composite materials have become popular due to their ability to have high electronic conductivity, variable oxidation states, large surface area, a porous structure. Herein we report, a composite material based on MoSe2 as electrode prepared using a standard single-step hydrothermal strategy. The structural and morphological study of the prepared material confirms the formation of the composite. The specific surface area has been estimated using BET technique and found to 522 m2 g ? 1 with average pore diameter as 4.6 nm. In all prepared composite electrodes, M@AC 1:5 electrode exhibits the highest specific capacity of 514 F g ? 1 at a scan rate of 10 mV s ? 1 for potential window 1 V in KOH electrolyte solution. The electrochemical impedance spectroscopy (EIS) study of the M@AC 1:5 electrode shows good agreement with cyclic voltammetry and galvanostatic charge-discharge storage mechanism. The aqueous symmetric cell fabricated of M@AC 1:5 with 6 M KOH electrolyte exhibits energy and power density 39.4 Wh kg?1 and 704.5 W kg?1 respectively. It shows long cycle stability with 90% capacitance retention and 100% coulombic efficiency even after 10,000 cycles. Further, the symmetric cell of M@AC 1:5 material was applied for lighting red LED, which illuminated for 22 min. The charging /discharging mechanism has been proposed based on finding of results through different characterizations. The asymmetric supercapacitor has also been designed using two different electrodes (first M@AC 1:5 and second synthetic MWCNT) and shows energy density of 14.9 Wh kg?1 and power density of 496 W kg?1 respectively. The capacitance retention is maintained up to 86.6% while coulombic efficiency recorded 100% for 10,000 cycles. Thus, obtained results highly encouraging and appropriate for the commercial applications. � 2021 Elsevier LtdItem Fabrication of activated carbon electrodes derived from peanut shell for high-performance supercapacitors(Springer Science and Business Media Deutschland GmbH, 2021-07-06T00:00:00) Pandey, Lokesh; Sarkar, Subhajit; Arya, Anil; Sharma, A.L.; Panwar, Amrish; Kotnala, R.K.; Gaur, AnuragIn this work, the activated carbon (AC) is derived from the waste material of peanut shells. The obtained activated carbon has been synthesized using the chemical activation process via impregnation with NaOH at various proportions (1:2 and 1:3). The structural, morphological, and electrochemical properties of obtained AC are examined by X-ray diffraction (XRD), BET surface analysis, scanning electron microscopy (SEM), and electrochemical techniques. The resulting AC shows the enhancement in specific surface area (SSA) from 584 to 735 m2/g at 1:2 ratio and 826 m2/g at 1:3 ratio after the activation process. The electrodes are fabricated using derived activated carbon for electrochemical characterization. It has been observed through cyclic voltammetry and galvanostatic charge�discharge measurements that 1:3 NaOH-activated samples reveal the maximum value of specific capacitance (263 F/g at 10�mV/s and 290 F/gat 0.2A/g). The sample also conveys the pre-dominant ~ 98% of efficiency from 400 to 1000th cycle with fast and almost constant capacitance. The electrochemical impedance spectroscopy (EIS) result suggests the pure capacitive nature of the sample and indicates the dominating electric double-layer capacitive (EDLC) behavior. The obtained results demonstrate that the peanut shell�derived activated carbon is a potential candidate as an electrode material for supercapacitors. Graphical abstract: [Figure not available: see fulltext.] � 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.