Department Of Physics

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/57

Browse

Search Results

Now showing 1 - 5 of 5
  • Item
    Investigation of dielectric and ferroelectric properties of pvdf/0.5ba (Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 composite
    (Apple Academic Press, 2023-06-02T00:00:00) Muduli, Sakti Prasanna; Parida, S.; Rout, S.K.; Mahapatra, S.K.
    (1-x)PVDF-(x)[0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3] composite films with x = 0.1, 0.2, 0.3, 0.4, 0.5 were synthesized and the comparative dielectric properties and ferroelectric properties were studied. 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 (BZT-BCT) ceramic was synthesized by conventional solid-state reaction method. After phase confirmation of calcined powder, it was added to poly(vinylidene fluoride) (PVDF) solution with different weight percentages, and composite films were prepared by solvent casting followed by hot pressing method. � 2023 Apple Academic Press, Inc.
  • Item
    Enhanced Curie temperature and superior temperature stability by site selected doping in BCZT based lead-free ceramics
    (Elsevier Ltd, 2022-01-31T00:00:00) Kumari, Sapna; Kumar, Amit; Kumar, Aman; Kumar, V.; Thakur, Vikas N.; Kumar, Ashok; Goyal, P.K.; Gaur, Anurag; Arya, Anil; Sharma, A.L.
    In this work, Bi3+ doped Ba0.98-3x/2BixCa0.02Zr0.02Ti0.976Cu0.008O3 [0 ? x ? 0.03] lead free ceramics, to be employed for structural, dielectric and ferroelectric studies, have been synthesized via conventional solid state reaction method. Rietveld refinement of the X-ray diffraction (XRD) data evidences the existence of a pure perovskite phase with tetragonal symmetry for all ceramics. The Scanning Electron Microscopy (SEM) reveals that the grain size, which is 16.14 ?m for x = 0 reduced to 2.11 ?m for x = 0.03. Dielectric studies demonstrate excellent dielectric behavior with high Curie temperature (TC ?159 �C), high dielectric constant (?r ?834, ?max ? 3146), and a low dielectric loss (tan? ? 0.019), for an optimum value of x = 0.02. The analysis of temperature coefficient of the dielectric permittivity indicates the applicability of these materials in multilayer ceramic capacitors. Impedance studies, conducted to understand the underlying physical mechanisms, are found to be in good agreement with the results of structural and dielectric studies. Furthermore, the ferroelectric measurement confirms the ferroelectric nature for all samples with an energy storage efficiency (?) of ?42% for x = 0.02 composition. � 2022 Elsevier Ltd and Techna Group S.r.l.
  • Item
    Probing the impact of bismuth-titanate based nanocomposite on the dielectric and electro-optical features of a nematic liquid crystal material
    (Elsevier B.V., 2021-12-22T00:00:00) Varshney, Depanshu; Anu; Prakash, Jai; Pratap Singh, Vinay; Yadav, Kamlesh; Singh, Gautam
    We report here the concentration and temperature dependent optical, electro-optical and dielectric studies on bismuth titanate (Bi2Ti2O7/Bi4Ti3O12) nanocomposite (BT2/BT4 NC, ?42 nm) doped nematic liquid crystal (NLC, 5CB) mixtures using optical polarising microscope and dielectric spectroscopic techniques. The optical textures confirm the uniform dispersion and miscibility of NCs in 5CB for all concentrations (i.e. 0.1, 0.25, 0.5, 1 and 2 wt%) and mixtures appear to be almost agglomeration free. The dielectric studies demonstrate the maximum changes in the dielectric parameters (dielectric permittivity, dielectric loss, loss factor and dielectric anisotropy) of 5CB sample for the 0.1 wt% mixture. Interestingly, the dielectric anisotropy of 5CB in 0.1 wt% mixture is increased by ? 11%. However, the dielectric memory effect (bias voltage ON-OFF) is observed maximum in the case of 1 wt% mixture. Similarly, the optical memory examined by bias voltage dependent (ON-OFF) optical textures is also significantly enhanced for 1 wt% mixture. The significant changes observed in dielectric properties of 5CB sample could be due to plausible interaction among NLC molecules and ionic impurities with BT2/BT4 NCs. Moreover, the enhanced volatile memory in BT2/BT4 NC-NLC mixture could be attributed to the dipole�dipole coupling between individual permanent dipole moment of anisotropic NLC molecules with the dipole moments generated by the ionic impurities agglomerated on the surface of high dielectric BT2/BT4 NCs. We strongly believe that such NCs-NLC mixtures would be certainly useful in the advancement of wearable devices (such as smart plenoptic cameras, watches etc.) and smart switchable windows. � 2021 Elsevier B.V.
  • Item
    Selection of best composition of Na+ ion conducting PEO-PEI blend solid polymer electrolyte based on structural, electrical, and dielectric spectroscopic analysis
    (Springer, 2020) Pritam, Arya A; Sharma, A.L.
    In this paper, we report the investigation on structural, electrical, dielectric properties, and ion dynamics of novel blend polymer electrolyte matrix (PEO-PEI) complexed with sodium hexafluorophosphate salt. All the solid polymer electrolyte films have been synthesized via solution cast method. The SPE films were characterized by the X-ray diffraction, field emission scanning electron microscope, impedance-dielectric spectroscopy, and thermogravimetric analysis. The morphology of the SPE alters with salt addition and confirms the blend polymer complex formation. The FTIR analysis evidenced the complex formation, and increase in the fraction of free ions is achieved. The ionic conductivity exhibits a maximum at the stoichiometric ratio O/Na = 10 and follows the Arrhenius behavior. The fraction of free ions is maximum for the SPE film with the highest ionic conductivity. The optimum electrolyte possesses a voltage stability window of about 4�V, excellent thermal stability up to 380��C, and high ionic transference number (~ 1). The complex permittivity and conductivity have been simulated in whole frequency window to extract relaxation time and dielectric strength. The dielectric constant and relaxation time exhibited sequentially a maximum and minimum for the SPE film with the highest ionic conductivity. The loss tangent peak shifts toward high frequency with addition of salt, and it infers the faster ion dynamics in the polymer matrix. Then the ion transport parameters number density of charge carriers (n), ion mobility (?), and diffusion coefficient (D) have been obtained by three methods (FTIR, impedance spectroscopy, and loss tangent method) and are in absolute correlation with the impedance results. An ion transport mechanism has been proposed based on experimental findings. � 2019, Springer-Verlag GmbH Germany, part of Springer Nature.
  • Item
    Selection of best composition of Na+ ion conducting PEO-PEI blend solid polymer electrolyte based on structural, electrical, and dielectric spectroscopic analysis
    (Institute for Ionics, 2019) Pritam; Arya A.; Sharma A.L.
    In this paper, we report the investigation on structural, electrical, dielectric properties, and ion dynamics of novel blend polymer electrolyte matrix (PEO-PEI) complexed with sodium hexafluorophosphate salt. All the solid polymer electrolyte films have been synthesized via solution cast method. The SPE films were characterized by the X-ray diffraction, field emission scanning electron microscope, impedance-dielectric spectroscopy, and thermogravimetric analysis. The morphology of the SPE alters with salt addition and confirms the blend polymer complex formation. The FTIR analysis evidenced the complex formation, and increase in the fraction of free ions is achieved. The ionic conductivity exhibits a maximum at the stoichiometric ratio O/Na = 10 and follows the Arrhenius behavior. The fraction of free ions is maximum for the SPE film with the highest ionic conductivity. The optimum electrolyte possesses a voltage stability window of about 4 V, excellent thermal stability up to 380 °C, and high ionic transference number (~ 1). The complex permittivity and conductivity have been simulated in whole frequency window to extract relaxation time and dielectric strength. The dielectric constant and relaxation time exhibited sequentially a maximum and minimum for the SPE film with the highest ionic conductivity. The loss tangent peak shifts toward high frequency with addition of salt, and it infers the faster ion dynamics in the polymer matrix. Then the ion transport parameters number density of charge carriers (n), ion mobility (?), and diffusion coefficient (D) have been obtained by three methods (FTIR, impedance spectroscopy, and loss tangent method) and are in absolute correlation with the impedance results. An ion transport mechanism has been proposed based on experimental findings.