Department Of Physics
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/57
Browse
4 results
Search Results
Item All-redox hybrid supercapacitors based on carbon modified stacked zinc cobaltite nanosheets(Royal Society of Chemistry, 2023-09-12T00:00:00) Kour, Simran; Kour, Pawanpreet; Sharma, A.L.The role of energy in the present century has increased with the fast advancement of the global economy. In this regard, hybrid supercapacitors (HSCs) as energy storage systems have become an extensive research focus worldwide. This study reports the synthesis of carbon-loaded ZnCo2O4 stacked nanosheets via an in situ hydrothermal process followed by annealing. The electrochemical response was tested in a 2-electrode system. The optimized composite exhibited a capacitance of ?527.6 F g?1 at 5 mV s?1. The symmetric SC (SSC) possessed an energy density (Ed) of ?17.3 W h kg?1 corresponding to a power density (Pd) of 2.25 kW kg?1. Two asymmetric all-redox HSCs have also been fabricated using an optimized composite material as the positive electrode. The previously synthesized MnCo2O4/AC (HSC1) and MnO2/AC (HSC2) were taken as negative electrodes. HSC1 exhibited an Ed of ?24.4 W h kg?1 corresponding to a Pd of ?0.8 kW kg?1. On the other hand, HSC2 exhibited the highest Ed of ?30.8 W h kg?1 at 2.4 kW kg?1. The real-time application of the composite is tested with the fabricated HSCs. HSC1 exhibited a capacitive retention of ?72.2% after 10 000 cycles. On the other hand, HSC2 exhibited a capacitive retention of ?73.4% after 10 000 cycles. The SSC, HSC1, and HSC2 illuminated a 39 red LED panel for ?3 min, 7 min, and 13 min, respectively. The results suggested the promising performance of all-redox HSCs. The overall results present a sustainable approach for creating hierarchical energy materials for the construction of future energy-storage systems. � 2023 The Royal Society of Chemistry.Item Simple and Productive Method to Develop Highly Sensitive and Fast Infrared Photodetector Using Spray Deposited Nanocrystalline PbS Thin Film(Institute of Physics, 2023-02-16T00:00:00) Thabit, Mohammed Y. H.; Kaawash, Nabeel M. S.; Begum, Sumayya; Halge, Devidas I.; Narwade, Vijaykiran N.; Alegaonkar, Prashant S.; Bogle, Kashinath A.This work demonstrates the development of a highly sensitive and fast infrared photodetector using a PbS thin film deposited using a simple and scalable method known as "spray pyrolysis". An aqueous precursor solution was deposited on a glass substrate at 150 �C have a cubic phase of PbS. Silver electrodes with a 1 mm gap are drawn on the film to create photo-detector devices. Low resistive contact between the silver electrode and the PbS film is revealed from the linear I-V measurements performed in the dark and under light illumination. Under the illumination of a 100-watt tungsten lamp, the photo-responsivity, sensitivity, response time, and decay time of the PbS film were measured. The Ag/PbS/Ag photodetector device has a responsivity of 70 mA/W, a sensitivity of 200 at 30 V, and the best response and decay times of 6.4 and 15.6 ms, respectively. The photodetector device produced by this simple and low-cost fabrication method has a fast response and decay time. � Published under licence by IOP Publishing Ltd.Item Mesoporous carbon/titanium dioxide composite as an electrode for symmetric/asymmetric solid?state supercapacitors(Elsevier Ltd, 2022-08-27T00:00:00) Arya, Anil; Iqbal, Muzahir; Tanwar, Shweta; Sharma, Annu; Sharma, A.L.; Kumar, VijayThis paper reports the successful synthesis of mesoporous carbon/titanium dioxide (MC/TiO2) composite electrodes via the hydrothermal method for supercapacitor (SC) applications. The morphology and structural properties of MC/TiO2 composites were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectra (FTIR). The electrochemical properties were recorded by cyclic voltammetry (CV) and galvanostatic charge/discharge (GCD) with an electrolyte (6 M KOH) in symmetric/asymmetric configuration. The specific capacitance (Cs) evaluated by CV is about 280F/g for composite electrode (95 % capacitance retention after 1000 cycles) and pristine has 150F/g @ 10 mV/s. Enhancement in capacitance is owing to faster charge dynamics within electrode material. The fabricated asymmetric device demonstrates high energy density (30.31 Wh/kg), than the symmetric configuration (?27 Wh/kg). Finally, both symmetric/asymmetric supercapacitors have illuminated a red LED, and strengthens the candidature of composite electrode for energy storage technology. � 2022 Elsevier B.V.Item Synergistically modified WS2@PANI binary nanocomposite-based all-solid-state symmetric supercapacitor with high energy density(Royal Society of Chemistry, 2022-03-09T00:00:00) Iqbal, Muzahir; Saykar, Nilesh G.; Alegaonkar, Prashant S.; Mahapatra, Santosh K.The rapid development of intelligent, wearable, compact electronic equipment has triggered the need for durable, flexible, and lightweight portable energy storage devices. Nanomaterials that are capable of delivering the high specific power density and commensurate energy density are potential candidate for realizing such devices. Herein, we report the facile synthesis of a binary nanocomposite WS2@PANI by utilizing hydrothermal and physical blending techniques to assess it as an electrode material for high-performance supercapacitors. The nanocomposite electrode delivered specific capacitance >335 F g?1 @ 10 mV s?1 (two-electrode), achieving energy and power densities of ?80 W h kg?1 and ?800 W kg?1, respectively, with capacitance retention of 83% even after 5000 charge-discharge cycles @ 10 A g?1, all of which are superior to the WS2 electrode. Dunns model quantifies capacitive and intercalative contributions that showed the cumulative effect of both to realize a robust, cost-effective, and energy-efficient device. The strategically incorporated PANI broadened the electrochemical window and the device's overall performance, resulting in high specific energy density. We demonstrated that our all-solid-state symmetric supercapacitor could be used to illuminate a light-emitting diode and drive a rotary motor. We believe that our WS2@PANI binary nanocomposite will be a potential candidate for energy storage devices. � 2022 The Royal Society of Chemistry