Department Of Physics
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/57
Browse
8 results
Search Results
Item Enhanced photocatalytic activity of BiOBr/ZnWO4 heterojunction: A combined experimental and DFT-based theoretical approach(Elsevier B.V., 2023-03-28T00:00:00) Andrade, Alana O.C.; Lacerda, Lu�s Henrique da Silveira; Lage J�nior, M.M.; Sharma, Surender K.; Maia da Costa, M.E.H.; Alves, Odivaldo C.; Santos, Evelyn C.S.; dos Santos, C.C.; de Menezes, A.S.; San-Miguel, Miguel Angel; Filho, Francisco Moura; Longo, Elson; Almeida, Marcio A.P.We report a successful fabrication of BiOBr/ZnWO4 heterojunction with enhanced photocatalytic performance for degrading Rhodamine B dye validated by joint experimental and theoretical approaches. The structural and microstructural analysis indicate that the heterostructures consist of a mixed tetragonal/monoclinic phase with enhanced surface area, which is crucial for photocatalysis. The results indicate increased photocatalytic activity for heterojunctions since BiOBr/ZnWO4 heterostructure showed a better degradation rate for Rhodamine B dye as compared to BiOBr due to higher surface area, pore size, and better photogenerated electron-hole pair separation efficiency. Additional analyses using isopropanol, benzoquinone, and sodium azide scavengers analysis were performed, showing that superoxide radicals (O2?) as the main responsible for the photocatalytic degradation of investigated materials. The theoretical analysis offers a complete overview of the composition and electronic structure of the interface. � 2023 Elsevier B.V.Item Adsorption and activation of CO2 on a Au19Pt subnanometer cluster in aqueous environment(Elsevier B.V., 2022-04-15T00:00:00) Mondal, Krishnakanta; Megha; Banerjee, Arup; Fortunelli, AlessandroWe employ ab initio density functional theory based method to investigate the ability of a subnanometer bimetallic Au19Pt cluster to adsorb and activate a CO2 molecule in an aqueous electrochemical environment. We find that, in water, Au19Pt gets negatively charged at zero bias and selectively promotes the adsorption and activation of the CO2 molecule via electron transfer and through the hybridization of oxygen p-orbitals and partially filled platinum d-orbitals. Notably, Pt acts as a collector of negative charge and behaves as a CO2-activating single-atom catalyst embedded within a robust Au20-like framework, thus suggesting Au19Pt as a potential candidate for CO2 mitigation. � 2022 Elsevier B.V.Item Optoelectronic and photocatalytic properties of stable pentagonal B2S and B2Se monolayers(Elsevier B.V., 2022-06-01T00:00:00) Katoch, Neha; Kumar, Jagdish; Kumar, Ashok; Ahluwalia, P.K.; Pandey, RavindraBoron-based 2D monolayers have attracted tremendous interest due to their unique physical and chemical properties. In this paper, we report novel pentagonal monolayers, B2S and B2Se, which are predicted to be energetically, dynamically, and thermally stable based on density functional theory. At the HSE06 level of theory, they exhibit a moderate indirect bandgap of (e.g., 1.82 eV for Penta-B2S and 1.94 eV for Penta-B2Se). Strain-induced indirect-to-direct bandgap transition, high hole mobility (~103 Cm2V-1S-1) and strong optical absorption (? ~105 Cm-1) in the visible region are observed for these monolayers. Moreover, the electronic band structures and optical spectra are tunable by mechanical strains suggesting their visible light-harvesting capabilities for optoelectronic applications. In this way, the pentagonal family of 2D materials is now expanded to include boron-containing photocatalytic materials for water splitting applications. � 2022Item Electronic and optical properties of boron-based hybrid monolayers(IOP Publishing Ltd, 2021-06-24T00:00:00) Katoch, Neha; Kumar, Ashok; Kumar, Jagdish; Ahluwalia, P.K.; Pandey, RavindraAnisotropic 2D Dirac cone materials are important for the fabrication of nanodevices having direction-dependent characteristics since the anisotropic Dirac cones lead to different values of Fermi velocities yielding variable carrier concentrations. In this work, the feasibility of the B-based hybrid monolayers BX (X = As, Sb, and Bi), as anisotropic Dirac cone materials is investigated. Calculations based on density functional theory and molecular dynamics method find the stability of these monolayers exhibiting unique electronic properties. For example, the BAs monolayer possesses a robust self-doping feature, whereas the BSb monolayer carries the intrinsic charge carrier concentration of the order of 1012 cm?2 which is comparable to that of graphene. Moreover, the direction-dependent optical response is predicted in these B-based monolayers; a high IR response in the x-direction is accompanied with that in the visible region along the y-direction. The results are, therefore, expected to help in realizing the B-based devices for nanoscale applications. � 2021 IOP Publishing Ltd Printed in the UKItem First principles study of electronic and thermoelectric performance of Li intercalated MoSe 2 nanotubes(American Institute of Physics Inc., 2017) Sharma, Munish; Kumar, Ashok; Pandey, Rabindra; Ahluwalia, P. K.We present a comparative study of pristine and Li intercalated MoSe 2 nanotube of armchair (6, 6) and zigzag (10, 0) chirality within the framework of density functional theory (DFT). Pristine nanotube is found to have band gap which vanishes upon Li intercalation. Additionally, Li intercalation results in reduction of room temperature ZT e for armchair MoSe 2 nanotube and enhancement in ZT e for intercalated zigzag MoSe 2 nanotube as compared to respective pristine nanotubes. Our results suggest that Li intercalation leads to a relatively high Seeback coefficient which may enhance the thermoelectric performance of zigzag MoSe 2 nanotube.Item Topological insulator behavior of WS 2 monolayer with square-octagon ring structure(American Institute of Physics Inc., 2016) Kumar, Ashok; Pandey, Ravindra; Ahluwalia, P. K.; Tankeshwar, K.We report electronic behavior of an allotrope of monolayer WS 2 with a square octagon ring structure, refereed to as (so-WS 2 ) within state-of-the-art density functional theory (DFT) calculations. The WS 2 monolayer shows semi-metallic characteristics with Dirac-cone like features around Cyrillic capital letter GHE. Unlike p-orbital's Dirac-cone in graphene, the Dirac-cone in the so-WS 2 monolayer originates from the d-electrons of the W atom in the lattice. Most interestingly, the spin-orbit interaction associated with d-electrons induce a finite band-gap that results into the metal-semiconductor transition and topological insulator-like behavior in the so-WS 2 monolayer. These characteristics suggest the so-WS 2 monolayer to be a promising candidate for the next-generation electronic and spintronics devices.Item Energetics and Electronic Properties of Pt Wires of Different Topologies on Monolayer MoSe 2(AIP Publishing, 2016) Jamdagni, Pooja; Kumar, Ashok; Thakur, Anil; Pandey, Ravindra; Ahluwalia, P. K.The energetics and electronic properties of different of Pt wires including linear, zigzag and ladder structures on MoSe2 have been investigated in the framework of The predicted order of stability of Pt wire on MoSe2 is found to be: linear > ladder > zigzag. Pt wires induce states near the of MoSe2 that results into metallic characteristics of Pt-wire/MoSe2 assembled system. signifies most of the contribution from Pt atoms near the Fermi energy of assembled wire/MoSe2 system. These findings are expected to be important for the of based on MoSe2 layers for flexible nanoelectronics.Item Interactions of Gas Molecules with Monolayer MoSe 2 : A First Principle Study(AIP Publishing, 2016) Sharma, Munish; Jamdagni, Pooja; Kumar, Ashok; Ahluwalia, P. K.We present a first principle study of interaction of toxic gas molecules (NO, NO2 and SO2) with MoSe2. The predicted order of sensitivity of gas molecule is NO2 > SO2 > NO. strongly influence the electronic behaviour of MoSe2 by inducing in the vicinity of Fermi energy. NO and SO2 is found to induce p-type effect while to metallic transitions occur on NO2 Our findings may guide the experimentalist for sensor based on MoSe2