Department Of Physics
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/57
Browse
2 results
Search Results
Item Development of novel cathode materials based on MWCNT for energy storage/conversion devices(Springer Science and Business Media, LLC, 2017) Agnihotri, Shruti; Rattan, Sangeeta; Sharma, A. L.In Chap. 1, already available technology for energy storage solutions like capacitors, lead acid batteries, compressed air energy storage, flywheels has been discussed in order to compare their energy and power densities. Emphasis has been laid on Rechargeable Lithium ion Battery (Li-ion). Various materials which are already explored and used as cathode of battery has also been discussed with their merits and demerits. Further introduction of prepared orthosilicate material with used conductive additive Multiwalled carbon nano tube (MWCNT) has also given. In Chap. 2, methodology used to prepare respective Li2MnFeSiO4 material and its composite with MWCNT has been discussed in detail. Further, in order to validate its electrochemical application, different steps of cell assembly of Lithium half cell fabrication has also been discussed. Chapter 3 comprises of results obtained using standard Field emission scanning electron microscope (FESEM). Effect of used MWCNT on its morphology has been discussed in this chapter. A.C Impedance spectroscopy has been used to study variation in conductivity with respect to bared material. Possible reasons for increased conductivity with morphology has also been discussed in discussion. Chapter 4 includes conclusions drawn from mentioned results. This chapter summarizes measured conductivity values with different concentrations of MWCNT. Improved conductivity with respect to bared orthosilicate material has been pointed in this chapter. ? Springer International Publishing Switzerland 2017.Item Polymer electrolytes for lithium ion batteries: a critical study(Institute for Ionics, 2017) Arya, A.; Sharma, A. L.Polymer electrolytes (PEs) are an essential component being used in most energy storage/conversion devices. The present review article on a brief history, advantage, and their brief application of polymer electrolyte systems. It consists of a glimpse on liquid, gel, and solid polymer electrolyte and a contrast comparison concerning benefits/disadvantages among the three. The article started with a brief introduction of polymer electrolytes followed by their varieties and extreme uses. The role of host polymer matrix by taking numerous examples of polymer electrolyte published by the different renowned group of the concerned field has been explored. The criteria for selection of appropriate host polymer, salt, inorganic filler/clay, and aprotic solvents to be used in polymer electrolyte have been discussed in detail. The mostly used polymer, salt, solvents, and inorganic filler/clay list has been prepared in order to keep the data bank at one place for new researchers. This article comprises different methodologies for the preparation of polymer electrolyte films. The different self-proposed mechanisms (like VTF, WLF, free volume theory, dispersed/intercalated mechanisms, etc.) have been discussed in order to explain the lithium ion conduction in polymer electrolyte systems. A numerous characterization techniques and their resulting analysis have been summarized from the different published reports at one place for better awareness of the scientific community/reader of the area. ? 2017, Springer-Verlag Berlin Heidelberg.