Department Of Physics
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/57
Browse
7 results
Search Results
Item All-redox hybrid supercapacitors based on carbon modified stacked zinc cobaltite nanosheets(Royal Society of Chemistry, 2023-09-12T00:00:00) Kour, Simran; Kour, Pawanpreet; Sharma, A.L.The role of energy in the present century has increased with the fast advancement of the global economy. In this regard, hybrid supercapacitors (HSCs) as energy storage systems have become an extensive research focus worldwide. This study reports the synthesis of carbon-loaded ZnCo2O4 stacked nanosheets via an in situ hydrothermal process followed by annealing. The electrochemical response was tested in a 2-electrode system. The optimized composite exhibited a capacitance of ?527.6 F g?1 at 5 mV s?1. The symmetric SC (SSC) possessed an energy density (Ed) of ?17.3 W h kg?1 corresponding to a power density (Pd) of 2.25 kW kg?1. Two asymmetric all-redox HSCs have also been fabricated using an optimized composite material as the positive electrode. The previously synthesized MnCo2O4/AC (HSC1) and MnO2/AC (HSC2) were taken as negative electrodes. HSC1 exhibited an Ed of ?24.4 W h kg?1 corresponding to a Pd of ?0.8 kW kg?1. On the other hand, HSC2 exhibited the highest Ed of ?30.8 W h kg?1 at 2.4 kW kg?1. The real-time application of the composite is tested with the fabricated HSCs. HSC1 exhibited a capacitive retention of ?72.2% after 10 000 cycles. On the other hand, HSC2 exhibited a capacitive retention of ?73.4% after 10 000 cycles. The SSC, HSC1, and HSC2 illuminated a 39 red LED panel for ?3 min, 7 min, and 13 min, respectively. The results suggested the promising performance of all-redox HSCs. The overall results present a sustainable approach for creating hierarchical energy materials for the construction of future energy-storage systems. � 2023 The Royal Society of Chemistry.Item Self-assembled carbon wrapped manganese cobaltite nano-composite with promising electrochemical performance for symmetric and asymmetric supercapacitor device(Elsevier Ltd, 2023-05-27T00:00:00) Kour, Simran; Kour, Pawanpreet; Sharma, A.L.The growing energy requirements of modern society have led to an intensive search for advanced supercapacitor (SC) electrode materials. Binary transition metal oxides with excellent supercapacitive performance are among the most promising materials. However, the phase transformation of these metal oxides during repeated charging/discharging is a major concern, which depletes their cyclic performance. Coating metal oxides with carbon can provide structural stability to the metal oxide, thereby increasing their cyclic life. In addition, the highly conductive carbon enhances the capacitance of metal oxides by allowing the effective transfer of charges from MnCo2O4 to the current collector. In this study, self-assembled carbon-wrapped MnCo2O4 composite has been prepared through a two-step process involving hydrothermal and solution-mixing processes. The structural/electrochemical performances of the composites have been investigated. The optimized composite offered a maximum capacitance of 626.8 Fg?1 withholding 98 % of capacitance for 6000 cycles. Furthermore, the electrochemical performance of the composite has also been tested in an all-redox symmetric SC (SSC) as well asymmetric (ASC) configuration. In the symmetric cell, 30.2 Whkg?1 of energy is reported for 1.6 kWkg?1 of power. The asymmetric cell with the optimized composite as a cathode and MnO2/Activated carbon as an anode was fabricated. The ASC displayed 45.5 Whkg?1 of energy corresponding to 10 kWkg?1. Three SSCs/ASCs in series illuminated a panel of 39 red-LEDs for 9 and 15 min, respectively. The results suggest the promising performance of such composites for hybrid supercapacitors. Thus, the fabrication of all-redox-type SSCs/ASCs can be a futuristic approach for hybrid storage systems. � 2023 Elsevier LtdItem Economic and environment friendly carbon decorated electrode for efficient energy storage devices(Elsevier Ltd, 2023-04-26T00:00:00) Singh, Nirbhay; Tanwar, Shweta; Sharma, A.L.; Yadav, B.C.The most dependent storage technologies are secondary batteries and supercapacitors. Supercapacitors are more competent regarding faster energy supply, sustainability, and high-capacity retaining. However, in supercapacitors, most research comprises the least abundant materials that raise the cost and toxicity, which are unfavorable to the environment. Therefore, we have prepared activated carbon-based earth-abundant iron oxyhydroxide material via a low-temperature hydrothermal technique. The key finding of this research is sustainable materials, with co-related studies of TEM and GCD cyclic stability (pre and post-cycling characterizations up to 10k). The X-ray photoelectron spectroscopy analysis reveals the elemental composition of the optimized sample. The electrochemical performance has been tested via galvanostatic charge-discharge analysis, electrochemical impedance spectroscopy, and cyclic voltammetry. The cyclic stability evaluation is done to see the lasting usability of the device for the 10,000th number of charging-discharging cycles, which is supported by electrochemical impedance spectroscopy results in form of a Nyquist plot. The galvanostatic charge-discharge analysis revealed the specific capacitance of 372 F g?1 at 2 mA. The specific energy and power density were obtained as 40 Wh kg?1 and 4200 W kg?1, respectively. The ACF1 shows Coulombic efficiency and capacity retention as 96 % and 80 %, respectively, up to 10k cycles. We have proposed a charge storage mechanism for the fabricated electrode. A supercapacitor has been made-up and tested for the glow of LED, and the device can glow LED for 20 min. The device was repeated after two months and reproduced the LED glow for the same duration. � 2023 Elsevier LtdItem Hierarchical template-free chestnut-like manganese cobaltite for high-performance symmetric and asymmetric supercapacitor(Elsevier B.V., 2022-11-25T00:00:00) Kour, Simran; Tanwar, Shweta; Kour, Pawanpreet; Sharma, A.L.In this work, template-free Chestnut-like MnCo2O4 microspheres are synthesized using a straight-forward hydrothermal process succeeded by calcination. Urea as a reducing/precipitating agent can play an essential role in controlling the morphology of the material without using any additional surfactants or templates. The effect of reducing agent (Urea) on the structural and morphological evolution of MnCo2O4 has been studied. The electrochemical performance of the synthesized materials is investigated in a real device two-electrode cell configuration (symmetric and asymmetric system) rather than a three-electrode configuration. The two-electrode system gives more accurate and practical evaluation of the capacitive behavior of the material. The MnCo2O4 displayed the highest capacitance of 245.34 F g?1 at 5 mV s?1 for 0�1 V in a symmetric cell configuration. It also held an energy density of 22.24 Wh kg?1 at 1500 W kg?1. The optimized sample showed outstanding cyclic performance with only 3% of capacitance loss after 5000 cycles. Based on the structural and electrochemical findings, a charge storage mechanism has been proposed for the symmetric SC. Furthermore, a hybrid asymmetric supercapacitor with MnCo2O4 as a cathode and the previously synthesized MnO2/AC as an anode is also fabricated which exhibited an energy response of 30.12 Wh kg?1 for a power of 7000 W kg?1. For practical applications, different colored LEDs (red, yellow, green, and blue) and a panel with six red LEDs have been illuminated. The panel with six red LEDs is illuminated for 12 mins. for symmetric supercapacitor and 18 mins. for asymmetric supercapacitor. All these remarkable outcomes suggested that the synthesized material has wide potential for supercapacitors. � 2022Item Synergistically modified WS2@PANI binary nanocomposite-based all-solid-state symmetric supercapacitor with high energy density(Royal Society of Chemistry, 2022-03-09T00:00:00) Iqbal, Muzahir; Saykar, Nilesh G.; Alegaonkar, Prashant S.; Mahapatra, Santosh K.The rapid development of intelligent, wearable, compact electronic equipment has triggered the need for durable, flexible, and lightweight portable energy storage devices. Nanomaterials that are capable of delivering the high specific power density and commensurate energy density are potential candidate for realizing such devices. Herein, we report the facile synthesis of a binary nanocomposite WS2@PANI by utilizing hydrothermal and physical blending techniques to assess it as an electrode material for high-performance supercapacitors. The nanocomposite electrode delivered specific capacitance >335 F g?1 @ 10 mV s?1 (two-electrode), achieving energy and power densities of ?80 W h kg?1 and ?800 W kg?1, respectively, with capacitance retention of 83% even after 5000 charge-discharge cycles @ 10 A g?1, all of which are superior to the WS2 electrode. Dunns model quantifies capacitive and intercalative contributions that showed the cumulative effect of both to realize a robust, cost-effective, and energy-efficient device. The strategically incorporated PANI broadened the electrochemical window and the device's overall performance, resulting in high specific energy density. We demonstrated that our all-solid-state symmetric supercapacitor could be used to illuminate a light-emitting diode and drive a rotary motor. We believe that our WS2@PANI binary nanocomposite will be a potential candidate for energy storage devices. � 2022 The Royal Society of ChemistryItem Aging impact of Se powder on the electrochemical properties of Molybdenum selenide: Supercapacitor application(Elsevier Ltd, 2022-02-10T00:00:00) Tanwar, Shweta; Singh, Nirbhay; Sharma, A.L.In the present report, we have studied the impact of aging on selenium (Se) powder in hydrazine hydrate (act as reducing agent) during synthesis of pure molybdenum selenide (MoSe2) material. The MoSe2 as electrode material is prepared via single-step hydrothermal technique with aging Se powder in reducing agent for zero, one, and three days. The structural, microstructural, and chemical nature analysis of the samples was done via XRD, FESEM, and FTIR tools whereas the electrochemical study was performed via CV, GCD, and EIS techniques. The optimized material coded as M 39 (three days aged sample with pH 9) shows a high specific capacitance (Cs) of 368 F g?1 at the current density of value 0.5 A g?1 along with an energy density of 51 Wh kg?1 and power density of 250 W kg?1. Based on the electrode's electrochemical outcomes, it may be indicated that the electrochemical performance of MoSe2 material upsurges as the aging of Se increases from zero to three days. From the obtained results it is could be predicted that the M 39 material may stand appropriate for commercial supercapacitors. � 2022Item High efficient activated carbon-based asymmetric electrode for energy storage devices(Elsevier Ltd, 2022-01-19T00:00:00) Singh, Nirbhay; Tanwar, Shweta; Yadav, B.C.; Sharma, A.L.Electrodes are fabricated using activated carbon@FeOOH and MoSe2. The synthesis of both electrode materials individually is done by a one-step hydrothermal process. The structural, morphological and chemical information's are investigated by XRD, FESEM and FTIR respectively. The electrochemical properties are investigated by EIS, CV and GCD. The Nyquist plot gives the value of Rb and Rct as 1.0 ? and 1.3 ? respectively. The cell shows a maximum specific capacitance of 110 F/g at the scan rate of 40 mV/s and the GCD shows a specific capacitance of 87.5 F/g at a high current density of 10 A/g. The energy density and power density calculated at current density 10 A/g are 31.11 Wh kg?1 and 4479 W kg?1, additionally, the maximum power density is 16000 W/kg, which is obtained at a current density of 40 A/g. The cell shows structural stability up to 5000 cycles with a capacity retention of 79%. The overall electrochemical performance of asymmetric electrodes (activated carbon@FeOOH and MoSe2) indicated its potential application in supercapacitors at commercial scale. � 2022