Department Of Zoology

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/62

Browse

Search Results

Now showing 1 - 9 of 9
  • Thumbnail Image
    Item
    APE1 modulates cellular responses to organophosphate pesticide-induced oxidative damage in non-small cell lung carcinoma A549 cells
    (Springer New York LLC, 2018) Thakur, Shweta; Dhiman, Monisha; Mantha, Anil K.
    Monocrotophos (MCP) and chlorpyrifos (CP) are widely used organophosphate pesticides (OPPs), speculated to be linked with human pathologies including cancer. Owing to the fact that lung cells are most vulnerable to the environmental toxins, the development and progression of lung cancer can be caused by the exposure of OPPs. The present study investigates the oxidative DNA damage response evoked by MCP and CP in human non-small cell lung carcinoma A549 cells. A549 cells were exposed to MCP and CP; cytotoxicity and reactive oxygen species (ROS) generation were measured to select the non-toxic dose. In order to establish whether MCP and CP can initiate the DNA repair and cell survival signalling pathways in A549 cells, qRT-PCR and Western blotting techniques were used to investigate the mRNA and protein expression levels of DNA base excision repair (BER)-pathway enzymes and transcription factors (TFs) involved in cell survival mechanisms. A significant increase in cell viability and ROS generation was observed when exposed to low and moderate doses of MCP and CP at different time points (24, 48 and 72?h) studied. A549 cells displayed a dose-dependent accumulation of apurinic/apyrimidinic (AP) sites after 24?h exposure to MCP advocating for the activation of AP endonuclease-mediated DNA BER-pathway. Cellular responses to MCP- and CP-induced oxidative stress resulted in an imbalance in the mRNA and protein expression of BER-pathway enzymes, viz. PARP1, OGG1, APE1, XRCC1, DNA pol ? and DNA ligase III ? at different time points. The treatment of OPPs resulted in the upregulation of TFs, viz. Nrf2, c-jun, phospho-c-jun and inducible nitric oxide synthase. Immunofluorescent confocal imaging of A549 cells indicated that MCP and CP induces the translocation of APE1 within the cytoplasm at an early 6?h time point, whereas it promotes nuclear localization after 24?h of treatment, which suggests that APE1 subcellular distribution is dynamically regulated in response to OPP-induced oxidative stress. Furthermore, nuclear colocalization of APE1 and the TF c-jun was observed in response to the treatment of CP and MCP for different time points in A549 cells. Therefore, in this study we demonstrate that MCP- and CP-induced oxidative stress alters APE1-dependent BER-pathway and also mediates cell survival signalling mechanisms via APE1 regulation, thereby promoting lung cancer cell survival and proliferation. ? 2017, Springer Science+Business Media, LLC.
  • Thumbnail Image
    Item
    Curcumin revitalizes Amyloid beta (25–35)-induced and organophosphate pesticides pestered neurotoxicity in SH-SY5Y and IMR-32 cells via activation of APE1 and Nrf2
    (Springer, 2017) Sarkar, Bibekananda; Dhiman, Monisha; Mittal, Sunil; Mantha, Anil K.
    Amyloid beta (Aβ) peptide deposition is the primary cause of neurodegeneration in Alzheimer’s disease (AD) pathogenesis. Several reports point towards the role of pesticides in the AD pathogenesis, especially organophosphate pesticides (OPPs). Monocrotophos (MCP) and Chlorpyrifos (CP) are the most widely used OPPs. In this study, the role of MCP and CP in augmenting the Aβ-induced oxidative stress associated with the neurodegeneration in AD has been assessed in human neuroblastoma IMR-32 and SH-SY5Y cell lines. From the cell survival assay, it was observed that MCP and CP reduced cell survival both dose- and time-dependently. Nitro blue tetrazolium (NBT) based assay for determination of intracellular reactive oxygen species (ROS) demonstrated that Aβ(25–35), MCP or CP produce significant oxidative stress alone or synergistically in IMR-32 and SH-SY5Y cells, while pretreatment of curcumin reduced ROS levels significantly in all treatment combinations. In this study, we also demonstrate that treatment of Aβ(25–35) and MCP upregulated inducible nitric oxide synthase (iNOS/NOS2) whereas, no change was observed in neuronal nitric oxide synthase (nNOS/NOS1), but down-regulation of the nuclear factor erythroid 2-related factor 2 (Nrf2) level was observed. While curcumin pretreatment resulted in upregulation of iNOS and Nrf2 proteins. Also, the expression of key DNA repair enzymes APE1, DNA polymerase beta (Pol β), and PARP1 were found to be downregulated upon treatment with MCP, Aβ(25–35) and their combinations at 24 h and 48 h time points. In this study, pretreatment of curcumin to the SH-SY5Y cells enhanced the expression of DNA repair enzymes APE1, pol β, and PARP1 enzymes to counter the oxidative DNA base damage via base excision repair (BER) pathway, and also activated the antioxidant element (ARE) via Nrf2 upregulation. Furthermore, the immunofluorescent confocal imaging studies in SH-SY5Y and IMR-32 cells treated with Aβ(25–35) and MCP-mediated oxidative stress and their combinations at different time periods suggesting for cross-talk between the two proteins APE1 and Nrf2. The APE1’s association with Nrf2 might be associated with the redox function of APE1 that might be directly regulating the ARE-mediated neuronal survival mechanisms.
  • Thumbnail Image
    Item
    APE1/Ref-1 as an emerging therapeutic target for various human diseases: Phytochemical modulation of its functions
    (Nature Publishing Group, 2014) Thakur, Shweta; Sarkar, Bibekananda; Cholia, Ravi P.; Gautam, Nandini; Dhiman, Monisha; Mantha, Anil K.
    Apurinic/apyrimidinic endonuclease 1 (APE1) is a multifunctional enzyme involved in the base excision repair (BER) pathway, which repairs oxidative base damage caused by endogenous and exogenous agents. APE1 acts as a reductive activator of many transcription factors (TFs) and has also been named redox effector factor 1, Ref-1. For example, APE1 activates activator protein-1, nuclear factor kappa B, hypoxia-inducible factor 1a, paired box gene 8, signal transducer activator of transcription 3 and p53, which are involved in apoptosis, inflammation, angiogenesis and survival pathways. APE1/Ref-1 maintains cellular homeostasis (redox) via the activation of TFs that regulate various physiological processes and that crosstalk with redox balancing agents (for example, thioredoxin, catalase and superoxide dismutase) by controlling levels of reactive oxygen and nitrogen species. The efficiency of APE1/Ref-1's function(s) depends on pairwise interaction with participant protein(s), the functions regulated by APE1/Ref-1 include the BER pathway, TFs, energy metabolism, cytoskeletal elements and stress-dependent responses. Thus, APE1/Ref-1 acts as a 'hub-protein' that controls pathways that are important for cell survival. In this review, we will discuss APE1/Ref-1's versatile nature in various human etiologies, including neurodegeneration, cancer, cardiovascular and other diseases that have been linked with alterations in the expression, subcellular localization and activities of APE/Ref-1. APE1/Ref-1 can be targeted for therapeutic intervention using natural plant products that modulate the expression and functions of APE1/Ref-1. In addition, studies focusing on translational applications based on APE1/Ref-1-mediated therapeutic interventions are discussed. ? 2014 KSBMB.
  • Thumbnail Image
    Item
    A review on protein–protein interaction network of APE1/Ref-1 and its associated biological functions
    (Wiley, 2015) Thakur, S.; Dhiman, Monisha; Tell, G.; Mantha, Anil K.
    Apurinic/apyrimidinic endonuclease 1 (APE1) is a classic example of functionally variable protein. Besides its well-known role in (i) DNA repair of oxidative base damage, APE1 also plays a critical role in (ii) redox regulation of transcription factors controlling gene expression for cell survival pathways, for which it is also known as redox effector factor 1 (Ref-1), and recent evidences advocates for (iii) coordinated control of other non-canonical protein–protein interaction(s) responsible for significant biological functions in mammalian cells. The diverse functions of APE1 can be ascribed to its ability to interact with different protein partners, owing to the attainment of unfolded domains during evolution. Association of dysregulation of APE1 with various human pathologies, such as cancer, cardiovascular diseases and neurodegeneration, is attributable to its multifunctional nature, and this makes APE1 a potential therapeutic target. This review covers the important aspects of APE1 in terms of its significant protein–protein interaction(s), and this knowledge is required to understand the onset and development of human pathologies and to design or improve the strategies to target such interactions for treatment and management of various human diseases. Copyright © 2015 John Wiley & Sons, Ltd.
  • Thumbnail Image
    Item
    Indian Herbs and their Therapeutic Potential against Alzheimer’s Disease and other Neurological Disorders
    (Wiley, 2017) Kaur, Navrattan; Sarkar, Bibekananda; Gill, Iqbal; Kaur, Sukhchain; Mittal, Sunil; Dhiman, Monisha; Padala, Prasad R.; Perez-Polo, Regino; Mantha, Anil K.
    Many present-day diseases are caused by disruption of the delicate balance between the reactive oxygen/nitrogen species (ROS/RNS) produced by oxidants and their scavenging by the antioxidants in the body. Chief among them is Alzheimer's disease (AD), an age-related neurodegenerative disease caused by the accumulation in the brain of amyloid beta (Aβ) plaques and of neurofibrillary tangles made up of the protein tau. Various theories for the pathogenesis of AD have been given, but no precise mechanism of its pathogenesis has been elucidated to date. A number of scientists are currently focusing on developing therapeutics for the prevention and treatment of AD. Natural plant-based products, which have been known traditionally in the treatment of brain disorders, could be a great help. Traditional herbal formulations developed for brain disorders are known as “Medhya drugs” in the Indian system of medicine called “Ayurveda” – a disease-preventive and health-promotive approach dating back to 5000 BC. This review focuses on the traditional use of some common Indian herbs in relation to AD, alongside recent advances in our understanding of their modes of action.
  • Thumbnail Image
    Item
    Ginkgolide B Revamps Neuroprotective Role of Apurinic/Apyrimidinic Endonuclease 1 and Mitochondrial Oxidative Phosphorylation Against Ab 25–35 -Induced Neurotoxicity in Human Neuroblastoma Cells
    (Wiley, 2015) Kaur, Navrattan; Dhiman, Monisha; Perez-Polo, J. Regino; Mantha, Anil K.
    Accumulating evidence points to roles for oxidative stress, amyloid beta (Aβ), and mitochondrial dysfunction in the pathogenesis of Alzheimer's disease (AD). In neurons, the base excision repair pathway is the predominant DNA repair (BER) pathway for repairing oxidized base lesions. Apurinic/apyrimidinic endonuclease 1 (APE1), a multifunctional enzyme with DNA repair and reduction–oxidation activities, has been shown to enhance neuronal survival after oxidative stress. This study seeks to determine 1) the effect of Aβ25–35 on reactive oxygen species (ROS)/reactive nitrogen species (RNS) levels, 2) the activities of respiratory complexes (I, III, and IV), 3) the role of APE1 by ectopic expression, and 4) the neuromodulatory role of ginkgolide B (GB; from the leaves of Ginkgo biloba). The pro-oxidant Aβ25–35 peptide treatment increased the levels of ROS/RNS in human neuroblastoma IMR-32 and SH-SY5Y cells, which were decreased after pretreatment with GB. Furthermore, the mitochondrial APE1 level was found to be decreased after treatment with Aβ25–35 up to 48 hr, and the level was increased significantly in cells pretreated with GB. The oxidative phosphorylation (OXPHOS; activities of complexes I, III, and IV) indicated that Aβ25–35 treatment decreased activities of complexes I and IV, and pretreatment with GB and ectopic APE1 expression enhanced these activities significantly compared with Aβ25–35 treatment. Our results indicate that ectopic expression of APE1 potentiates neuronal cells to overcome the oxidative damage caused by Aβ25–35. In addition, GB has been shown to modulate the mitochondrial OXPHOS against Aβ25–35-induced oxidative stress and also to regulate the levels of ROS/RNS in the presence of ectopic APE1. This study presents findings from a new point of view to improve therapeutic potential for AD via the synergistic neuroprotective role played by APE1 in combination with the phytochemical GB. © 2015 Wiley Periodicals, Inc.
  • Thumbnail Image
    Item
    Phytochemical Ginkgolide B Attenuates Amyloid-␤ 1 - 42 Induced Oxidative Damage and Altered Cellular Responses in Human Neuroblastoma SH-SY5Y Cells
    (IOS Press, 2017) Gill, Iqbal; Kaur, Sukhchain; Kaur, Navrattan; Dhiman, Monisha; Mantha, Anil K.
    Oxidative stress is an upsurge in reactive oxygen/nitrogen species (ROS/RNS), which aggravates damage to cellular components viz. lipids, proteins, and nucleic acids resulting in impaired cellular functions and neurological pathologies including Alzheimer's disease (AD). In the present study, we have examined amyloid-β (Aβ)-induced oxidative stress responses, a major cause for AD, in the undifferentiated and differentiated human neuroblastoma SH-SY5Y cells. Aβ1-42-induced oxidative damage was evaluated on lipids by lipid peroxidation; proteins by protein carbonyls; antioxidant status by SOD and GSH enzyme activities; and DNA and RNA damage levels by evaluating the number of AP sites and 8-OHG base damages produced. In addition, the neuro-protective role of the phytochemical ginkgolide B (GB) in countering Aβ1-42-induced oxidative stress was assessed. We report that the differentiated cells are highly vulnerable to Aβ1-42-induced oxidative stress events as exerted by the deposition of Aβ in AD. Results of the current study suggest that the pre-treatment of GB, followed by Aβ1-42 treatment for 24 h, displayed neuro-protective potential, which countered Aβ1-42-induced oxidative stress responses in both undifferentiated and differentiated SH-SY5Y neuronal cells by: 1) hampering production of ROS and RNS; 2) reducing lipid peroxidation; 3) decreasing protein carbonyl content; 4) restoring antioxidant activities of SOD and GSH enzymes; and 5) maintaining genome integrity by reducing the oxidative DNA and RNA base damages. In conclusion, Aβ1-42 induces oxidative damage to the cellular biomolecules, which are associated with AD pathology, and are protected by the pre-treatment of GB against Aβ-toxicity. Taken together, this study advocates for phytochemical-based therapeutic interventions against AD.
  • Thumbnail Image
    Item
    Oxidative stress and inflammation in cardiovascular diseases: Two sides of the same coin
    (Springer India, 2015) Dhiman, Monisha; Thakur, Shweta; Upadhyay, Shishir; Kaur, Amandeep; Mantha, Anil K.
    Globally, the major cause of long- term disability and death is an ?epidemiologic transition? from infectious diseases and malnutrition complications to non-communicable chronic diseases like cardiovascular disease (CVD), cancer and diabetes. CVD accounts for major global mortality. Imbalance due to the generation of reactive oxygen species (ROS) levels above normal baseline levels and decreased antioxidant defence reserve makes the cardiovascular system (cardiac and vascular cells) susceptible to oxidative stress and damage. Growing evidences support the notion that oxidative stress plays a crucial role in the development and progression of CVD by altering normal functions such as inactivation of nitric oxide (NO) leading to endothelial dysfunction, intracellular Ca2+overload and others. Oxidative stress also mediates inflammation through various signalling cascades such as the activation of inflammatory transcription factors (TFs) namely NF-?B, AP-1 and Nrf-1. A vicious cycle of oxidative stress-mediated inflammation and inflammation- induced oxidative stress makes the CVD-related complications worse. Therefore, it is also very important to clearly understand the role of enzymatic sources of RO mechanisms underlying pathological conditions and link between oxidative stress and inflammation during each stage of CVD. The present chapter will elucidate the role of oxidative stress and inflammation in CVD development and progression. It is important to find the remedial measures, to develop the efficient biomarkers and to design the therapeutic strategies for CVD in the near future. ? Springer India 2015.
  • Thumbnail Image
    Item
    An in vitro study ascertaining the role of H2O2 and glucose oxidase in modulation of antioxidant potential and cancer cell survival mechanisms in glioblastoma U-87 MG cells
    (Springer New York LLC, 2017) Cholia, Ravi P.; Kumari, Sanju; Kumar, Saurabh; Kaur, Manpreet; Kaur, Manbir; Kumar, Raj; Dhiman, Monisha; Mantha, Anil K.
    Glial cells protect themselves from the elevated reactive oxygen species (ROS) via developing unusual mechanisms to maintain the genomic stability, and reprogramming of the cellular antioxidant system to cope with the adverse effects. In the present study non-cytotoxic dose of oxidants, H2O2 (100??M) and GO (10??U/ml) was used to induce moderate oxidative stress via generating ROS in human glioblastoma cell line U-87 MG cells, which showed a marked increase in the antioxidant capacity as studied by measuring the modulation in expression levels and activities of superoxide dismutase (SOD1 and SOD2) and catalase (CAT) enzymes, and the GSH content. However, pretreatment (3?h) of Curcumin and Quercetin (10??M) followed by the treatment of oxidants enhanced the cell survival, and the levels/activities of the antioxidants studied. Oxidative stress also resulted in an increase in the nitrite levels in the culture supernatants, and further analysis by immunocytochemistry showed an increase in iNOS expression. In addition, phytochemical pretreatment decreased the nitrite level in the culture supernatants of oxidatively stressed U-87 MG cells. Elevated ROS also increased the expression of COX-2 and APE1 enzymes and pretreatment of Curcumin and Quercetin decreased COX-2 expression and increased APE1 expression in the oxidatively stressed U-87 MG cells. The immunocytochemistry also indicates for APE1 enhanced stress-dependent subcellular localization to the nuclear compartment, which advocates for enhanced DNA repair and redox functions of APE1 towards survival of U-87 MG cells. It can be concluded that intracellular oxidants activate the key enzymes involved in antioxidant mechanisms, NO-dependent survival mechanisms, and also in the DNA repair pathways for glial cell survival in oxidative-stress micro-environment. ? 2017, Springer Science+Business Media, LLC.