Department Of Zoology
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/62
Browse
6 results
Search Results
Item The incidence of male breast cancer: from fiction to reality - correspondence(NLM (Medline), 2023-05-24T00:00:00) Mukherjee, Anirban Goutam; Gopalakrishnan, Abilash Valsala; Jayaraj, Rama; Renu, Kaviyarasi; Dey, Abhijit; Vellingiri, Balachandar; Malik, Tabarak[No abstract available]Item The creation of selenium nanoparticles decorated with troxerutin and their ability to adapt to the tumour microenvironment have therapeutic implications for triple-negative breast cancer(Royal Society of Chemistry, 2023-02-09T00:00:00) Saranya, Thiruvenkataswamy; Kavithaa, Krishnamoorthy; Paulpandi, Manickam; Ramya, Sennimalai; Winster, Sureshbabu Harysh; Mani, Geetha; Dhayalan, Sangeetha; Balachandar, Vellingiri; Narayanasamy, ArulDespite advancements in treatment, managing aggressive types of breast cancer, particularly Triple Negative Breast Cancer (TNBC), remains a daunting task. Newer chemotherapeutics enhance the multidrug resistance in cancer cells, making them untreatable. The current research work was framed to develop a novel therapeutic target by utilizing the flavanol, troxerutin (TXN) as a drug of interest to target TNBC. And also, to increase the efficiency of the drug at the target site, a nanocarrier called selenium nanoparticles (SeNPs) has been exploited. Thus, the anticancer efficacy of TXN and Se-TXN against TNBC (in vitro and in vivo) has been compared and analysed in the present study. Se-TXN was synthesized by a precipitation approach and characterized by diverse analytical techniques, which confirmed the successful loading of TXN on the SeNPs. The inhibitory concentration (IC50) of Se-TXN was determined to be 6.5 � 0.5 ?g mL?1 according to the in vitro data. Even at lower concentrations, the existence of apoptotic bodies shows that Se-TXN is effective against TNBC. Additionally, the Se-TXN expression study shows that the activation of the caspase cascade pathway, which results in apoptosis, occurs from the downregulation of anti-apoptotic proteins and genes and the upregulation of pro-apoptotic proteins and genes. And the in vivo investigations like histopathology, hematology and biochemical parameters revealed that the Se-TXN had significantly lowered the tumour volume of treated Balb/C mice without having any significant systemic toxicity when compared to other treatment groups. Altogether, our data suggests the efficacy of Se-TXN nanoconjugates as an effective management therapy for treating TNBC. � 2023 The Royal Society of Chemistry.Item Evolution of Frozen Section in Carcinoma Breast: Systematic Review(Hindawi Limited, 2022-05-23T00:00:00) Rana, Manjit Kaur; Rana, Amrit Pal Singh; Sharma, Uttam; Barwal, Tushar Singh; Jain, AklankBackground. The frozen section (FS) has been a good technique in surgical management of breast lesions since many years. But complete agreement and cooperation have not been achieved everywhere among surgeons and pathologists especially in the developing countries. FS undergoes continuous criticism due to various shortcomings but continued to be evaluated especially in developing countries. Objectives. This review was conducted to synthesize information on the use of frozen section in carcinoma breast. Data Sources. The MEDLINE database for frozen section since its origin and its implication in recent breast surgery techniques was studied. Study Eligibility Criteria. Sixty-five articles were reviewed with complete analysis on FS in both benign and malignant breast lesions. Study Appraisal and Synthesis Methods. The analysis of frozen section was done as a diagnostic tool in breast lesions, margin status in breast conservative surgery in carcinoma breast, and sentinel lymph node and use of immunohistochemistry for sentinel lymph node FS. Results. It was analysed that the FS gives accurate results in margin status analysis, decreasing rerecurrence. Conclusion. The accuracy of FSA, low recurrence rate, avoidance of reoperation, and good cosmesis are the key points of its use in breast conservative surgery. Its use in sentinel lymph node biopsy (SLNB) is equivocal. However, application of immunohistochemistry on frozen section of SLNB is an evolving trend in today's era. � 2022 Manjit Kaur Rana et al.Item Quantification and optimization of clot retraction in washed human platelets by Sonoclot coagulation analysis(John Wiley and Sons Inc, 2021-10-07T00:00:00) Yadav, Pooja; Beura, Samir K.; Panigrahi, Abhishek R.; Singh, Sunil K.Introduction: Clot retraction is a pivotal process for haemostasis, where platelets develop a contractile force in fibrin meshwork and lead to the increased rigidity of clot. The pathophysiological alteration in contractile forces generated by the platelet-fibrin meshwork can lead to haemostatic disorders. Regardless of its utter significance, clot retraction remains a limited understood process owing to lack of quantification methodology. Sonoclot analysis is a point-of-care technique used in clinical laboratories for whole blood analysis that provides�in vitro�qualitative as well as quantitative assessment of coagulation process from initial fibrin formation to clot retraction. Methods: Human washed platelets were isolated by differential centrifugation method and analysed via optical imaging, microscopy and Sonoclot analysis using 1-2�נ108/mL of washed platelets, 1�U/mL of thrombin, 1�mg/mL of fibrinogen and 1�mM of calcium chloride. Results: In this study, we demonstrate the novelty of this instrument in the quantitative evaluation of clot retraction in washed platelets and attempted to optimize the reference range of Sonoclot parameters including ACT - 87.3���20.997, CR - 16.23���3.538 and PF - 3.57���0.629, (n�=�10). Discussion: Sonoclot analysis provides a simple and quantitative method to better understand in vitro clot retraction and its modulation by retraction components including platelet count, fibrinogen and platelet�fibrin interaction compared with existing conventional methods. Sonoclot may prove to be a valuable tool in thrombus biology research to understand fundamental basis of blood clot retraction. � 2021 John Wiley & Sons LtdItem Dopamine, sleep, and neuronal excitability modulate amyloid-?-mediated forgetting in Drosophila(Public Library of Science, 2021-10-07T00:00:00) Kaldun, Jenifer C.; Lone, Shahnaz R.; Humbert Camps, Ana M.; Fritsch, Cornelia; Widmer, Yves F.; Stein, Jens V.; Tomchik, Seth M.; Sprecher, Simon G.Alzheimer disease (AD) is one of the main causes of age -related dementia and neurodegeneration. However, the onset of the disease and the mechanisms causing cognitive defects are not well understood. Aggregation of amyloidogenic peptides is a pathological hallmark of AD and is assumed to be a central component of the molecular disease pathways. Panneuronal expression of A?42 Arctic peptides in Drosophila melanogaster results in learning and memory defects. Surprisingly, targeted expression to the mushroom bodies, a center for olfactory memories in the fly brain, does not interfere with learning but accelerates forgetting. We show here that reducing neuronal excitability either by feeding Levetiracetam or silencing of neurons in the involved circuitry ameliorates the phenotype. Furthermore, inhibition of the Rac-regulated forgetting pathway could rescue the A?42 Arctic-mediated accelerated forgetting phenotype. Similar effects are achieved by increasing sleep, a critical regulator of neuronal homeostasis. Our results provide a functional framework connecting forgetting signaling and sleep, which are critical for regulating neuronal excitability and homeostasis and are therefore a promising mechanism to modulate forgetting caused by toxic A? peptides. � 2021 Kaldun et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Item Biosynthesis of Zinc Oxide Nanoparticles Using Catharanthus Roseus Leaves and Their Therapeutic Response in Breast Cancer (MDA-MB-231) Cells(Routledge, 2021-07-26T00:00:00) Bangroo, Apoorva; Malhotra, Akshay; Sharma, Uttam; Jain, Aklank; Kaur, AnupreetAs the current study reports the utilization of the leaf extract of Catharanthus roseus (C.roseus) for the biological synthesis of zinc oxide nanoparticles (ZnO NPs) because of the importance of the importance of health and environment. Bioinspired synthesis were characterized using Fourier Transform Infrared Spectroscopy (FT-IR), Field Emission-Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy (TEM), Energy-Dispersive X-ray Spectroscopy (EDX) and X-Ray diffraction (XRD). XRD and TEM micrograph analysis revealed that the synthesized nanostructures were well-dispersed and spherical with the average particle size in the 18-30 nm range were produced. The FT-IR spectra confirmed presence of phenolic compounds that act as reducing and capping agents. Further, it suggested the possible utilization of hydroxyl groups and amides in the reduction of Zn ions and stablization of ZnO NPs. Zinc oxide nanomaterials are effective in cancer treatments, including the destruction of tumor cells with minimal damage to healthy cells. The toxicity of zinc oxide nanomaterials was checked in vitro in the human breast cancer line MDA-MB-231. Inverse relation of the percentage of viable cells to the concentration of zinc oxide nanomaterials at increasing molar levels was assessed. The cytotoxicity analysis used in the MTT test shows the substantial viable MDA-MB-231-cells despite the increased concentration of exposure to zinc oxide nanomaterials. Reduction in the ratio of viable MDA-MB-231 cells after being exposed to zinc oxide nanomaterials was compared to untreated cancerous cells. The present approach to biosynthesis is quick, inexpensive, eco-friendly, and high-rise stable nanomaterials of zinc oxide with substantial cancer potential. This is the first study that reports molar concentrations (with the lowest concentration of 10 mM) as an anticancer agent for breast cancer and potential clinical uses for synthesized zinc oxide nanomaterials. Thus, C. roseus based synthesized ZnO NPs could be explored not only as environmentally benign method but also as a potential anti-carcinogenic agent. � 2022 Taylor & Francis Group, LLC.