Department Of Environmental Science And Technology

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/84

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Sequestration of heavy metals from contaminated water using magnetic carbon nanocomposites
    (Elsevier B.V., 2022-03-30T00:00:00) Kataria, Navish; Chauhan, Amit Kumar; Garg, V.K.; Kumar, Parmod
    Heavy metals are toxic to flora, fauna and human beings. This study focused on removing toxic metals from an aqueous medium using magnetic carbon (Fe3O4@Carbon) nanocomposites. The biogenic green synthesis approach was used to fabricate the magnetic nanocomposite using low-cost poplar sawdust powder. The characterization of the nanocomposites was done using FESEM, TEM BET and FTIR. The sequestration of Pb (II), Cu (II) and Cr (VI) from water by Fe3O4@Carbon nanocomposites were studied under batch mode. The adsorption capacities for Pb (II), Cu (II) and Cr (VI) were 151.5, 48.08, and leaves49.29 mg/g respectively. The removal of metals by magnetic composites was studied in a mono, binary and tertiary network of metal ions. Adsorption isotherms studies indicated the chemosorption of Cu (II) and Cr (VI) onto the surface of nanocomposites. The thermodynamic analysis revealed that removal of studied metals ions is spontaneous and feasible. In this study, the effectiveness of magnetic nanocomposites is also explored for the removal of other heavy metals from tap water and simulated water sample. The heavy metal removal efficiency of the nanocomposites was not affected up to thrice reuse of adsorbent. � 2022
  • Thumbnail Image
    Item
    Removal of Methylene Blue from aqueous solution by Fe3O4@Ag/SiO2 nanospheres: Synthesis, characterization and adsorption performance
    (Elsevier B.V., 2018) Saini, J.; Garg, V.K.; Gupta, R.K.
    In this study, silver silica coated magnetite (Fe3O4@Ag/SiO2) nanospheres were synthesized employing sonication method and their performance was evaluated as nanoadsorbents for the removal of Methylene Blue in batch mode experiments. The physical characteristics of these nanospheres were studied using XRD, SEM, EDX, TEM, and FTIR techniques. The Fe3O4@Ag/SiO2 nanospheres were capable to remove 99.6% Methylene Blue from aqueous solution at pH 7. A possible mechanism for the adsorption of Methylene Blue onto Fe3O4@Ag/SiO2 has been proposed. The adsorption equilibrium and kinetics were studied for experimental data. The removal process followed Langmuir isotherm with maximum monolayer adsorption capacity of 128.5 mg/g. Experimental kinetic data fitted well to Pseudo-second-order and Intraparticle diffusion models. The values of thermodynamic parameters, viz., ?G0, ?S0 and ?H0 confirmed spontaneous, endothermic and feasible adsorption of Methylene Blue under studied experimental conditions. The Fe3O4@Ag/SiO2 nanospheres were regeneratable and reusable for five successive cycles. ? 2017 Elsevier B.V.