Department Of Environmental Science And Technology

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/84

Browse

Search Results

Now showing 1 - 5 of 5
  • Item
    Uranium and Fluoride Accumulation in Vegetable and Cereal Crops: A Review on Current Status and Crop-Wise Differences
    (Multidisciplinary Digital Publishing Institute (MDPI), 2023-09-19T00:00:00) Sachdeva, Saloni; Powell, Mike A.; Nandini, Girish; Kumar, Hemant; Kumar, Rakesh; Sahoo, Prafulla Kumar
    Uranium (U) and fluoride (F?) contamination in agricultural products, especially vegetable and cereal crops, has raised serious concerns about food safety and human health on a global scale. To date, numerous studies have reported U and F? contamination in vegetable and cereal crops at local scales, but the available information is dispersed, and crop-wise differences are lacking. This paper reviews the current status of knowledge on this subject by compiling relevant published literatures between 1983 and 2023 using databases such as Scopus, PubMed, Medline, ScienceDirect, and Google Scholar. Based on the median values, F? levels ranged from 0.5 to 177 mg/kg, with higher concentrations in non-leafy vegetables, such as Indian squash �Praecitrullus fistulosus� (177 mg/kg) and cucumber �Cucumis sativus� (96.25 mg/kg). For leafy vegetables, the maximum levels were recorded in bathua �Chenopodium album� (72.01 mg/kg) and mint �Mentha arvensis� (44.34 mg/kg), where more than 50% of the vegetable varieties had concentrations of >4 mg/kg. The concentration of U ranged from 0.01 to 17.28 mg/kg; tubers and peels of non-leafy vegetables, particularly radishes �Raphanus sativus� (1.15 mg/kg) and cucumber �Cucumis sativus� (0.42 mg/kg), contained higher levels. These crops have the potential to form organometallic complexes with U, resulting in more severe threats to human health. For cereal crops (based on median values), the maximum F? level was found in bajra �Pennisetum glaucum� (15.18 mg/kg), followed by chana �Cicer arietinum� (7.8 mg/kg) and split green gram �Vigna mungo� (4.14 mg/kg), while the maximum accumulation of U was recorded for barley �Hordeum vulgare� (2.89 mg/kg), followed by split green gram �Vigna mungo� (0.45 mg/kg). There are significant differences in U and F? concentrations in either crop type based on individual studies or countries. These differences can be explained mainly due to changes in geogenic and anthropogenic factors, thereby making policy decisions related to health and intake difficult at even small spatial scales. Methodologies for comprehensive regional�or larger�policy scales will require further research and should include strategies to restrict crop intake in specified �hot spots�. � 2023 by the authors.
  • Item
    Trace Element Occurrence in Vegetable and Cereal Crops from Parts of Asia: A Meta-data Analysis of Crop-Wise Differences
    (Springer Science and Business Media Deutschland GmbH, 2023-02-13T00:00:00) Kerketta, Anjali; Kumar, Hemant; Powell, Mike A.; Sahoo, Prafulla Kumar; Kapoor, Harmanpreet Singh; Mittal, Sunil
    In the present study, a systematic review along with a meta-analysis was conducted based on relevant studies from 11 Asian countries (1999�2022, Scopus, PubMed, MEDLINE, ScienceDirect, and Google Scholar) to evaluate the crop-wise differences in the accumulation of trace element (TE) in the edible part of different crops (vegetables: leafy (LV), root (RV), fruit (FV); cereal crops: rice (RIC), wheat (WHE), maize (MAZ)). Based on the median concentration�of the compiled data, the TE accumulation in different vegetable crops was ranked in the decreasing order of Fe > Zn > Mn > Cu > Ni > Cr > Pb > Co > Se > Cd > As, and in cereal crops, this is followed as Fe > Zn > Cu > Ni > Cr > Co > Pb > As > Se > Cd > Hg. A clear difference was found between vegetable categories, with a higher accumulation of most of the elements in LV, especially spinach, coriander, radish leaves, mustard, amaranthus, and pakchoi than other vegetable types. Root vegetables displayed higher bioconcentration factors (BCF) than the other two vegetable types. For cereal crops, higher metal contents were found in WHE followed by RIC and MAZ, but RIC had relatively higher BCF for certain metals (As, Cd, Cu, Cr, Ni) and WHE dominated for the remaining metals. When compared with the prescribed safe limits of the non-essential metals (As, Cd, and Pb), this study revealed that the majority of the vegetable and cereal crop contaminations were from Bangladesh, China, India, Iran, and Pakistan. � 2023, The Author(s), under exclusive licence to Springer Nature Switzerland AG.
  • Item
    Soil-sediment linkage and trace element contamination in forested/deforested areas of the Itacai�nas River Watershed, Brazil: To what extent land-use change plays a role?
    (Elsevier B.V., 2022-03-08T00:00:00) Dall'Agnol, Roberto; Sahoo, Prafulla Kumar; Salom�o, Gabriel Negreiros; de Ara�jo, Alessandra Danieli Miranda; da Silva, Marcio Sousa; Powell, Mike A.; Junior, Jair Ferreira; Ramos, Silvio Junio; Martins, Gabriel Caixeta; da Costa, Marlene Furtado; Guilherme, Luiz Roberto Guimar�es
    Trace elements (TE) contamination in forested areas of the Itacai�nas River Watershed (IRW), Brazilian Amazon, arouses growing interest owing to the rapid deforestation and mining activities. In this study, soils (surface, SS; bottom, BS) and stream sediments (SD) from forested/deforested areas of IRW were analyzed with the aim of (1) evaluating the major sources of TE (mainly As, Ba, Cd, Cu, Co, Cr, Hg, Mo, Mn, Ni, Pb, V, and Zn), and (2) examining the soil-sediment TE link related to land-use change and/or geologic factors. Compositional data analysis (CoDA) was used to eliminate data closure issues and the centred log-ratio (clr) transformation yielded better results in Principal Component Analysis (PCA). The TE distribution pattern was significantly different (p < 0.05) between forested and deforested areas, but in both areas the TE distribution pattern is significantly correlated between SS, BS, and SD, indicating a strong lithogenic control. PCA (clr-transformed) identified the major geochemical bedrock signature as Fe-Ti-V-Cu-Cr-Ni, which is nearly similar in soil and sediments. The more accentuated enrichment and the maximum number of anomalies of these elements were found in the Caraj�s Basin and are highly coincident with mineral deposits/local lithologies without clear indication of anthropogenic contamination from point sources. Besides geogenic factors, deforestation is also affecting TE distribution in the basin. In deforested areas, Mn was significantly enriched in the surface horizon. Furthermore, linear regression analysis shows stronger TE relationships between soils and sediments in deforested areas than in forested ones, reflecting higher erosion in the former. This could be the reason for the relatively higher enrichment of TE (e.g., Fe, Mn, Cu, Cr, Ni) in deforested sediments. The TE contamination using regional background values provides more accurate results than worldwide reference values. Thus, the former should be considered for a more realistic environmental risk assessment in IRW and other forest ecosystems in the Brazilian Amazon. � 2022 Elsevier B.V.
  • Item
    Meta-analysis of uranium contamination in groundwater of the alluvial plains of Punjab, northwest India: Status, health risk, and hydrogeochemical processes
    (Elsevier B.V., 2021-11-23T00:00:00) Sahoo, Prafulla Kumar; Virk, Hardev Singh; Powell, Mike A.; Kumar, Ravishankar; Pattanaik, Jitendra Kumar; Salom�o, Gabriel Negreiros; Mittal, Sunil; Chouhan, Lokesh; Nandabalan, Yogalakshmi Kadapakkam; Tiwari, Raghavendra Prasad
    Despite numerous studies, there are many knowledge gaps in our understanding of uranium (U) contamination in the alluvial aquifers of Punjab, India. In this study, a large hydrogeochemical dataset was compiled to better understand the major factors controlling the mobility and enrichment of uranium (U) in this groundwater system. The results showed that shallow groundwaters (<60 m) are more contaminated with U than from deeper depths (>60 m). This effect was predominant in the Southwest districts of the Malwa, facing significant risk due to chemical toxicity of U. Groundwaters are mostly oxidizing and alkaline (median pH: 7.25 to 7.33) in nature. Spearman correlation analysis showed that U concentrations are more closely related to total dissolved solids (TDS), salinity, Na, K, HCO3?, NO3? Cl?, and F? in shallow water than deep water, but TDS and salinity remained highly correlated (U-TDS: ? = 0.5 to 0.6; U-salinity: ? = 0.5). This correlation suggests that the salt effect due to high competition between ions is the principal cause of U mobilization. This effect is evident when the U level increased with increasing mixed water species (Na-Cl, Mg-Cl, and Na-HCO3). Speciation data showed that the most dominant U species are Ca2UO2(CO3)2? and CaUO2(CO3)3?, which are responsible for the U mobility. Based on the field parameters, TDS along with pH and oxidation-reduction potential (ORP) were better fitted to U concentration above the WHO guideline value (30 ?g.L?1), thus this combination could be used as a quick indicator of U contamination. The strong positive correlation of U with F? (? = 0.5) in shallow waters indicates that their primary source is geogenic, while anthropogenic factors such as canal irrigation, groundwater table decline, and use of agrochemicals (mainly nitrate fertilizers) as well as climate-related factors i.e., high evaporation under arid/semi-arid climatic conditions, which result in higher redox and TDS/salinity levels, may greatly affect enrichment of U. The geochemical rationale of this study will provide Science-based-policy implications for U health risk assessment in this region and further extrapolate these findings to other arid/semi-arid areas worldwide. � 2021 Elsevier B.V.
  • Item
    Occurrence, distribution, and environmental risk assessment of heavy metals in the vicinity of Fe-ore mines: a global overview
    (Taylor and Francis Ltd., 2021-06-08T00:00:00) Sahoo, Prafulla Kumar; Powell, Mike A.; Martins, Gabriel Caixeta; Dall'Agnol, Roberto; Salom�o, Gabriel Negreiros; Mittal, Sunil; Pontes, Paulo R�genes Monteiro; Guimar�es, Jos� Tasso Felix; de Siqueira, Jose Oswaldo
    Several studies have investigated the consequences of heavy metal contamination in the vicinity of individual Fe ore mines, however, at present there are no systematic studies that consider the global scenario; this work strives to begin filling that gap. This review includes data reported for metals and pH in soil, overburden, sediment, tailings, and water in the vicinity of Fe mines at sites in 19 countries over the past 15 years. Elements of concern include As, Fe, Mn, Cd, Cu, Cd, Co, Pb, Ni and Zn. Various pollution and ecological risk indices were applied to evaluate environment risks by heavy metals. � 2021 Informa UK Limited, trading as Taylor & Francis Group.