Department Of Environmental Science And Technology
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/84
Browse
2 results
Search Results
Item Applications of Fe3O4@AC nanoparticles for dye removal from simulated wastewater(Elsevier, 2019) Joshi, S; Garg, V.K; Kataria, N; Kadirvelu, K.This study deals with the removal of cationic dyes from the simulated wastewater using Fe3O4 nanoparticles loaded activated carbon. Fe3O4@AC nanoparticles were synthesised using co-precipitation methods. The Fe3O4@AC nanoparticles (nps) were characterised using different techniques and data revealed that the synthesised nanoparticles were 6–16 nm in diameter. pHpzc of Fe3O4@AC nanoparticles was 7.8. BET surface area of Fe3O4@AC nps was found to be 129.6 m2/g by single point method and 1061.9 m2/g by multipoint method. Adsorption experiments were performed to optimize the effect of process conditions such as pH of solution, nanoparticles dose, temperature, concentration of dye and contact time on contaminant removal. The maximum uptake capacity of Fe3O4@AC was found to be 138 and 166.6 mg/g for methylene blue and brilliant green dyes, respectively. In order to assess dye adsorption behaviour, adsorption isotherm models viz., Langmuir, Freundlich and Temkin were applied to the data. Langmuir isotherm best fitted [R2 = 0.993 (MB) and R2 = 0.920 (BG)] to the experimental data of both the dyes. Further, Pseudo-second order rate equation fitted better to the experimental data. Reuse potential of the nanoparticles was also investigated for the removal of both the dyes and it is inferred from the data that the synthesised nanoadsorbent has promising reuse potential, therefore can be used for several cycles. © 2019 Elsevier LtdItem Removal of Congo red and Brilliant green dyes from aqueous solution using flower shaped ZnO nanoparticles(Elsevier Ltd, 2017) Kataria, N.; Garg, V.K.This work reports preparation and characterization of ZnO nanoparticles prepared by low temperature hydrothermal methods and their application for anionic dye (Congo red) and cationic dye (Brilliant green) removal from aqueous medium. The adsorption capacity of ZnO nanoparticles for Congo red dye and Brilliant green dye was up to 71.4 and 238 mg/g, respectively under selected process conditions. Dye adsorption behaviour has been explained applying different isotherms. Freundlich isotherm model best fitted to the dye removal data. Adsorption kinetics of both dyes is well explained by pseudo-second order model. Physical adsorption has been investigated using thermodynamic parameters viz., Gibb's free energy (?G?), enthalpy (?H?) and entropy (?S?). The reusability of ZnO nanoparticles was examined upto three cycles. ? 2017 Elsevier Ltd. All rights reserved.