Department Of Environmental Science And Technology
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/84
Browse
2 results
Search Results
Item Arsenic induced physiological changes in improved varieties of rice grown in Malwa region of Punjab(Society for Advancement of Human and Nature (SADHNA), 2015) Kamboj, Ritu; Sharma, S; Vishwakarma, G.S.; Mittal, SunilRice is a major staple food throughout the world. However metal contamination of rice has been recognized as a new disaster on large scale. Two rice cultivars viz PR 116 and PR 118 were grown in vitro to study the effect of increasing arsenic concentration (50, 100, 250 and 500 µM) on germination, root and shoot length, biomass dry weight, chlorophyll content and per cent cellular respiration. Results showed reduction in all these parameters thereby proving the toxic nature of arsenic. Arsenic accumulation in roots and shoots of both the varieties was monitored by atomic absorption spectrophotometer (AAS) and it was concluded that arsenic is translocated to above ground tissues and ultimately reaches the grain. The status of arsenic concentration of rice and its affect on human health need to be further investigated.Item Arsenic Induced Alteration in Macromolecule Concentration and Antioxidant System in Two Improved Rice Varieties(Tamil Nadu Scientific Research Organization (TNSRO), 2016) Kamboj, Ritu; Vishwakarma, Gajendra Singh; Sharma, Shilpa; Mittal, SunilArsenic contamination of rice has been highlighted as major issue throughout the world as it is a staple food for millions. The aim of study was to analyze the effect of different concentration of arsenic on the germination, physiology, macromolecules concentration and antioxidant enzymes in improved varieties of rice. In vitro study indicates that the lower concentration of arsenate had a stimulating effect on germination, chlorophyll content as well as respiratory content while an inhibitory effect at higher concentration. Roots were more affected than shoots. Further, the content of macromolecules (carbohydrate and protein) was elevated while the activities of their hydrolyzing enzymes (α, β amylase and protease) were declined on arsenic stress. The significant elevation in the activity of superoxide dismutase and peroxidase enzymes also proved the generation of reactive oxygen species due to the arsenic toxicity