Department Of Environmental Science And Technology

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/84

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Effect of chemo-mechanical disintegration on sludge anaerobic digestion for enhanced biogas production
    (Springer Verlag, 2016) Kavitha, S.; Saji Pray, S.; Yogalakshmi, K.N.; Adish Kumar, S.; Yeom, I.-T.; Rajesh banu, J.
    The effect of combined surfactant-dispersion pretreatment on dairy waste activated sludge (WAS) reduction in anaerobic digesters was investigated. The experiments were performed with surfactant, Sodium dodecyl sulfate (SDS) in the range of 0.01 to 0.1?g/g suspended solids (SS) and disperser with rpm of 5000?25,000. The COD (chemical oxygen demand) solubilization, suspended solids reduction, and biogas generation increased for an energy input of 7377?kJ/kg total solids (TS) (12,000?rpm, 0.04?g/g SS, and 30?min) and were found to be 38, 32, and 75?%, higher than that of control. The pretreated sludge improved the performance of semicontinuous anaerobic digesters of 4?L working volume operated at four different SRTs (sludge retention time). SRT of 15?days was found to be appropriate showing 49 and 51?% reduction in SS and volatile solids (VS), respectively. The methane yield of the pretreated sample was observed to be 50?mL/g VS removed which was observed to be comparatively higher than the control (12?mL/g VS removed) at optimal SRT of 15?days. To the best of the authors? knowledge, this study is the first to be reported and not yet been documented in literature. ? 2015, Springer-Verlag Berlin Heidelberg.
  • Thumbnail Image
    Item
    Treatment of seafood processing wastewater using upflow microbial fuel cell for power generation and identification of bacterial community in anodic biofilm
    (Academic Press, 2016) Jayashree, C.; Tamilarasan, K.; Rajkumar, M.; Arulazhagan, P.; Yogalakshmi, K.N.; Srikanth, M.; Banu, J.R.
    Tubular upflow microbial fuel cell (MFC) utilizing sea food processing wastewater was evaluated for wastewater treatment efficiency and power generation. At an organic loading rate (OLR) of 0.6 g d-1, the MFC accomplished total and soluble chemical oxygen demand (COD) removal of 83 and 95%, respectively. A maximum power density of 105 mW m-2 (2.21 W m-3) was achieved at an OLR of 2.57 g d-1. The predominant bacterial communities of anode biofilm were identified as RB1A (LC035455), RB1B (LC035456), RB1C (LC035457) and RB1E (LC035458). All the four strains belonged to genera Stenotrophomonas. The results of the study reaffirms that the seafood processing wastewater can be treated in an upflow MFC for simultaneous power generation and wastewater treatment. ? 2016 Elsevier Ltd.