Department Of Environmental Science And Technology
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/84
Browse
9 results
Search Results
Item Co-occurrence of geogenic uranium and fluoride in a semiarid belt of the Punjab plains, India(Elsevier B.V., 2023-10-05T00:00:00) Chaudhari, Umakant; Mehta, Madhu; Sahoo, Prafulla Kumar; Mittal, Sunil; Tiwari, Raghavendra P.The inordinate presence of uranium (U) and fluoride (F?) in shallow aquifers of arid/semi-arid regions in northern India has raised a serious health concern; the Muktsar district of Punjab is one such example. In the present study, a total of 38 groundwater samples (17 from <100 ft (very shallow; VSL), 21 from >100 to 180 ft (shallow; SL)) were collected from this district to understand the current health risk associated with U and F? and the major factors/processes influencing these contaminants. Groundwater in the study area is mostly alkaline and oxic in nature. The concentration of U ranged from 18.5 ?g/L to 456 ?g/L exceeding the WHO permissible limit (>30 ?g/L) in 93 and 100% samples from VSL and SL respectively, while F? concentration (ranged from 0.3 to 14.4 mg/L) above the limit (>1.5 mg/L) were found in 75 and 57% samples from VSL and SL respectively. As per the depth-wise distribution of U and F?, there is no significant difference between VSL and SL samples, with a few exceptions. Spearman rank correlation (?) shows a significant positive correlation (p-value < 0.05) between U and F? (? = 0.5), and U with total dissolved solid (TDS) (? = 0.5), salinity (? = 0.6), and bicarbonate (HCO3?) (? = 0.7) and a positive association of F? with TDS (? = 0.3), salinity (? = 0.3), and HCO3? (? = 0.3), indicating these parameters are responsible for the co-occurrence of U and F?. Moreover, this geochemical signature is attributed to their geogenic origin. Uranium speciation data show that UO2(CO3)22? and UO2(CO3)34? are dominant species, while F? predominantly occurs as F? species. The regions with high concentration of U and F? in groundwater primarily have mixed type species (Na�HCO3 and NaCl type). Geochemical modelling revealed that the precipitation of calcite, dolomite, and aragonite is favourable for mobility of F? in groundwater. The hazard quotient (HQ) of F? for adults and children exceeds 1 in 57.8% and 65.7% of samples, respectively, while in case of U, 94.7% and 100% samples exceed 1, respectively, indicating the latter is having greater health impact on local people. The current data indicated an urgent demand to develop low-cost and effective remedial techniques to manage groundwater contamination in this region. � 2023Item Rice husk biochar - A novel engineered bio-based material for transforming groundwater-mediated fluoride cycling in natural environments(Academic Press, 2023-05-24T00:00:00) Kumar, Rakesh; Sharma, Prabhakar; Sharma, Pushpa Kumari; Rose, Pawan Kumar; Singh, Rakesh Kumar; Kumar, Nishant; Sahoo, Prafulla Kumar; Maity, Jyoti Prakash; Ghosh, Ashok; Kumar, Manish; Bhattacharya, Prosun; Pandey, AshokBiochar, a promising carbon-rich and carbon-negative material, can control water pollution, harness the synergy of sustainable development goals, and achieve circular economy. This study examined the performance feasibility of treating fluoride-contaminated surface and groundwater using raw and modified biochar synthesized from agricultural waste rice husk as problem-fixing renewable carbon-neutral material. Physicochemical characterizations of raw/modified biochars were investigated using FESEM-EDAX, FTIR, XRD, BET, CHSN, VSM, pHpzc, Zeta potential, and particle size analysis were analyzed to identify the surface morphology, functional groups, structural, and electrokinetic behavior. In fluoride (F?) cycling, performance feasibility was tested at various governing factors, contact time (0�120 min), initial F? levels (10�50 mg L?1), biochar dose (0.1�0.5 g L?1), pH (2�9), salt strengths (0�50 mM), temperatures (301�328 K), and various co-occurring ions. Results revealed that activated magnetic biochar (AMB) possessed higher adsorption capacity than raw biochar (RB) and activated biochar (AB) at pH 7. The results indicated that maximum F? removal (98.13%) was achieved using AMB at pH 7 for 10 mg L?1. Electrostatic attraction, ion exchange, pore fillings, and surface complexation govern F? removal mechanisms. Pseudo-second-order and Freundlich were the best fit kinetic and isotherm for F? sorption, respectively. Increased biochar dose drives an increase in active sites due to F? level gradient and mass transfer between biochar-fluoride interactions, which reported maximum mass transfer for AMB than RB and AB. Fluoride adsorption using AMB could be described through chemisorption processes at room temperature (301 K), though endothermic sorption follows the physisorption process. Fluoride removal efficiency reduced, from 67.70% to 53.23%, with increased salt concentrations from 0 to 50 mM NaCl solutions, respectively, due to increased hydrodynamic diameter. Biochar was used to treat natural fluoride-contaminated surface and groundwater in real-world problem-solving measures, showed removal efficiency of 91.20% and 95.61%, respectively, for 10 mg L?1 F? contamination, and has been performed multiple times after systematic adsorption-desorption experiments. Lastly, techno-economic analysis was analyzed for biochar synthesis and F? treatment performance costs. Overall, our results revealed worth output and concluded with recommendations for future research on F? adsorption using biochar. � 2023 Elsevier LtdItem Co-transport and deposition of fluoride using rice husk-derived biochar in saturated porous media: Effect of solution chemistry and surface properties(Elsevier B.V., 2023-02-10T00:00:00) Kumar, Rakesh; Sharma, Prabhakar; Rose, Pawan Kumar; Sahoo, Prafulla Kumar; Bhattacharya, Prosun; Pandey, Ashok; Kumar, ManishFluoride (F?) contamination in water is a global health concern, threatening the well-being of millions. This study investigated the role of ZnCl2/FeCl3-rice husk-modified biochar (Zn-BC and Zn/Fe-BC) in treating F?-contaminated surface and groundwater under the influence of varying solution chemistry, co-existing ions, and biochar-amended through column transport experiments. Modified biochar showed maximum F? adsorption, 99.01% and 91.90% using Zn/Fe-BC and Zn-BC, respectively, than 85.87% using raw biochar (R-BC). Raw/modified biochars were characterized with FESEM-EDAX, FTIR, XRD, particle size, surface area, electro-kinetic potential, and point of zero charge analyses. Langmuir and pseudo-second-order kinetic could explain that F?-biochar interactions are dominated by chemisorption at ambient temperature while physisorption at higher temperatures. The influence of salt concentrations and co-occurring ions reduced F? sorption using Zn/Fe-BC. Increased salt strengths led to reduced electrophoretic mobility of biochar particles, i.e., biochar�biochar particles attract each other and increase the hydrodynamic diameter, which ultimately reduces the active sites on biochar for F? adsorption. Co-transport and deposition of biochar and F? in saturated porous media revealed lower mobility of biochar, and maximum F? adsorption was observed at 10 mM salt strength. Biochar transport is governed by electrostatic interactions, whereas F? transport mainly occurs through chemisorption. In rural areas, hand pumps and tube wells are generally used as source of potable water for drinking and cooking purposes; thus, biochar-mediated sand columns can be utilized for defluoridation. Thus, Zn/Fe-BC can be utilized as a potential bio-adsorbent for F?-contaminated natural surface and groundwater with optimum preparation and treatment costs. � 2023 The AuthorsItem Multi-parametric groundwater quality and human health risk assessment vis-�-vis hydrogeochemical process in an Agri-intensive region of Indus basin, Punjab, India(Taylor and Francis Ltd., 2021-06-14T00:00:00) Jaswal, Vijay; Kumar, Ravishankar; Sahoo, Prafulla Kumar; Mittal, Sunil; Kumar, Ajay; Sahoo, Sunil Kumar; Nandabalan, Yogalakshmi KadapakkamThe groundwater quality of the Indus basin of Punjab, India, is a serious concern due to the existence of toxic contaminants. Although, this contamination has been documented in some studies, some part of this basin is scantily explored. This is true for the Fazilka district of Malwa region, Punjab. In the present study, a total of 78 groundwater samples were collected from this district to evaluate their suitability for drinking and irrigation purpose, to understand the current hydrogeochemical processes involved and assess the human health risk status of the region. The results of the water quality index (WQI) revealed that majority of the groundwater samples were of poor quality with U, F?, SO42?, and NO3? exceeding the BIS limit in 60%, 94%, 43%, and 19% of samples, respectively. The groundwater geochemistry is mainly influenced by rock-water interaction. Ca-Mg-Cl water type is identified as the dominant hydrogeochemical facies, followed by Ca-Mg-SO42? and Na-Cl types. The Mg2+ and Na+ were identified as the major cations, while SO42? and HCO3? existed as the dominant anions. Furthermore, the results of Principal Component Analysis (PCA), Hierarchical cluster and Pearson correlation matrix (PCM) analyses corroborated the elevated level of U, F?, SO42? with geogenic activity supplemented with agrochemical activities. The annual effective intake dose of U exceeded the WHO recommended mean annual effective dose of U (100 �Sv y?1) for all age groups with infants recording the highest dose of U (151 �Sv y?1). Moreover, the non-cancer risk of U and F? exceeded the USEPA limit (HQ-1) in majority of the sites. The high cumulative risk of non-carcinogenic contaminants (HI-4.6) in the entire study area is a matter of grave concern. � 2021 Informa UK Limited, trading as Taylor & Francis Group.Item Hydrochemical characteristics and human health risk assessment of groundwater in the Shivalik region of Sutlej basin, Punjab, India(Springer Science and Business Media Deutschland GmbH, 2021-05-10T00:00:00) Mittal, Sunil; Sahoo, Prafulla Kumar; Sahoo, Sunil Kumar; Kumar, Ravishankar; Tiwari, Raghavendra PrasadShivalik region is one of the agri-intensive regions in Punjab, India, wherein groundwater quality is a major human health concern. In this study, a total of 57 groundwater samples were collected from the Rupnagar district of this region (one sample per 36 km2) to evaluate its quality, the role of hydrogeochemical processes in its contamination, and further their potential human health hazards. The results indicate that the major water chemistry is governed by carbonate weathering followed by silicate weathering. The Fe, Mg, Mn, Se, and HCO3- concentrations exceeded the BIS drinking water standards in 86, 51, 11, 9, and 79% of the samples, respectively. Piper and Durov plots indicated the dominance of Ca-HCO3- water types, followed by Ca-Mg-Cl- and Ca-Cl-. Furthermore, multivariate analyses indicated the geogenic origin for Fe, Mg, Mn, Se, SO42-, and anthropogenic sources (agrochemicals, cement factories, and fly ash) for NO3-, Cu, and Cr. The estimated carcinogenic risk of As and Cr falls under the very low (10-6) to low (10-5) risks category. Furthermore, the cumulative risk of non-carcinogenic contaminants (F-, U, NO3-) (HI-0.93) is at an alarming level and also close to the boundary line of USEPA limits (HI-1). There is an urgent need to undertake suitable policy measures for sustainability of groundwater quality. � 2021, Saudi Society for Geosciences.Item Source apportionment, chemometric pattern recognition and health risk assessment of groundwater from southwestern Punjab, India(Springer Science and Business Media B.V., 2020-02-06T00:00:00) Kumar, Ravishankar; Mittal, Sunil; Sahoo, Prafulla Kumar; Sahoo, Sunil KumarThe groundwater quality of southwestern Punjab, India, is a serious cause of concern due to the presence of chemical contaminants in it. However, limited studies of groundwater quality, sources of chemical contaminants and their health risks are available for the region. Hence, this study was conducted to investigate the source, distribution and potential health risk assessment of groundwater quality in three districts of southwestern Punjab, India. The spatial distribution of groundwater chemical contaminants and their potential health risks have been illustrated using inverse distance weighting interpolation technique. The concentration of fluoride (F?; ranged from 0.08 to 4.79�mg�L?1) exceeded the WHO limit (1.5��g�L?1) in 80 and 50% samples collected from Bathinda and Ludhiana districts, respectively. The uranium (U) concentration ranged from 0.5 to 432��g�L?1 and shows ~ 85%, 75% and 10% of samples collected from Bathinda, Barnala and Ludhiana districts exceeded the WHO drinking water limit (30��g�L?1), respectively. The groundwater quality of the Bathinda district is a matter of concern due to elevated levels of alkalinity, hardness, fluoride, uranium and nitrate (NO3?). The principal component analysis shows close association between F? and U, which indicates their geogenic origin. Further, they also seem to be subordinately influenced by diffuse anthropogenic activities. The clustering of Cu and Pb with NO3? and SO42? indicates their anthropogenic origin. The non-carcinogenic health risk assessment indicates that F?, NO3? and U are the major health risk pollutants in the study area. The carcinogenic health risk of As and Cr exceeded the USEPA limits (10?6) in the entire study area, but observed to be more serious for the district Bathinda (10?3�10?5). The spatial distribution maps illustrate that the health risk for Bathinda district inhabitants is higher than Barnala and Ludhiana districts. � 2020, Springer Nature B.V.Item Geochemical assessment of groundwater contaminants and associated health risks in the Shivalik region of Punjab, India(Taylor and Francis Ltd., 2020-08-07T00:00:00) Mittal, Sunil; Kumar, Ravishankar; Sahoo, Prafulla Kumar; Sahoo, Sunil KumarThe present study investigates the groundwater suitability for drinking and irrigation purposes in the Shivalik region of Punjab, India. The results revealed that the concentration of Se, U, and F? exceeded BIS acceptable drinking water standards in 18%, 9%, and 16% samples, respectively. Multivariate analyses indicate the geogenic origin for As, U, Fe, F? and SO42?, and anthropogenic for NO3?, Cu, and Cr. The carcinogenic risk of drinking water is in very low (10?6) to low (10?5) category, while cumulative non-carcinogenic risk (HI-1.2) is slightly higher than USEPA limits (HI-1). The groundwater quality was found suitable for irrigation purpose. � 2020 Informa UK Limited, trading as Taylor & Francis Group.Item WATERSHED CHARACTERISATION AND MANAGEMENT PLANNING OF HARIKE WETLAND USING REMOTE SENSING AND GIS APPROACH(Central University of Punjab, 2019) NAJAR, GH NABI; Pandey, PuneetaWetlands are among the world’s most productive ecosystems and offer several beneficial services for man, fish and other wildlife. Despite the numerous valuable services provided by wetlands, they are overexploited throughout the world and particularly in developing countries. Hence their conservation and management has become a serious issue; and to restore them, conservational efforts at watershed level are most appropriate. Watershed planning approach adopted for wetland restoration provides dynamic benefits by restoring ecological processes and conserve water and soil resource integrity. In the present study, an attempt has been made to carry out a comprehensive analysis of Harike wetland and its catchment for various conservational measures and its sustainable management. The whole study area has been divided into 5 watershed basins, which were further subdivided into 25 sub-watersheds using Shuttle Radar Topography Mission (SRTM) data in conjunction with topographical maps of the study area. Morphometric parameters including linear parameters such as Stream number, Stream order (U), Stream Length (LU), Mean stream length (Lsm), Stream length ratio (RL), Bifurcation Ratio (Rb ); relief parameters such as Basin relief (Bh), Relief Ratio (Rh ), Ruggedness Number (Rn), Gradient ratio (Gh), Dissection index (Di); and aerial parameters namely: Drainage density (Dd), Drainage texture (T), Stream iv frequency (Fs), Form factor (Rf), Circulatory ratio (Rc), Elongation ratio (Re), Length of overland flow (Lg) and Constant channel maintenance(C) have been analysed to characterise the study area. The Morphometric analysis results revealed that study area as a whole has 7th stream order drainage basin as per the Strahler method. The sub-watershed ‘SWS11’ and ‘SWS12’ showed the smallest and largest basin area of 68.17 and 328.25 Km2 respectively. Among 25 sub-watersheds, SWS15 exhibit highest mean bifurcation ratio of 6.16. The drainage system of the basin is coarse with permeable subsurface strata and having moderate to good groundwater prospects. Landsat-8 Thematic Mapper (TM) and Linear Imaging Self Scanning Sensor-IV (LISS IV) satellite data of year 1995 and 2016 have been used to investigate the land use/ land cover (LULC) of Harike wetland and its catchment. On the basis of the spectral reflectance, seven major land use/land cover classes have been recognised namely; water, agricultural crop land, current follow land, wetland vegetation, wasteland, forest and built-up land. Agricultural land occupied the largest area in both the years of 1995 and 2016, covering an area of 74.55 and 66.16% respectively; whereas, forest occupied the lowest area of 0.13 and 0.10% respectively during the same time periods. Current fallow land exhibited the highest increase in total area followed by built up land. Different primary and secondary data were used to calculate the several parameters used in Revised Universal Soil Loss Equation (RUSLE). Length and Slope-factors (LS-factors) were calculated using data derived from Digital Elevation Model (DEM) in conjunction with topographical maps. Land use/land cover data prepared from LISS-IV satellite image (resolution of 5.8 m) have been used to calculate the Cover management-factor (C-factor). Average annual rainfall of last 15 years from year 2000 to 2015 of the study area have been used to prepare soil erodibility factor. SWS01 and SWS20 showed highest and lowest average annual soil loss of 12.22 and 3.20 t/ha/year respectively; whereas, average soil loss for whole study area was 5.03 t/ha/year. To have insights about groundwater recharge potential in the study area, groundwater potential zonation map was prepared using information from different raster layers including rainfall, slope, lineament density, soil, LULC, drainage density, geological and geomorphological maps. For the whole study area, groundwater potential recharge has been classified into five categories: poor, low, v medium, good and excellent based on infiltration potential. The moderate zone exhibits the highest percentage of 37.9 (1701 Km2 ). The area having excellent groundwater recharge potential is only 7.8% (350.13 km2 ). Further, groundwater recharge potential was analysed for all the 25 sub-watersheds of the study area, where, sub-watershed SWS03 covering large portion of the Harike wetland exhibited the highest area under excellent groundwater prospect zone (32.09%). In the present study an attempt has also been made to prioritise the different subwatersheds for soil and water conservation. Prioritization of sub-watersheds has been done based on soil erosion estimation and morphometric analysis and groundwater recharge prospect zonation. The results revealed that prioritization based on soil erosion estimation method is more appropriate than morphometric based method. Vulnerability of Harike wetland to weed infestation, encroachment and sediment deposition has been carried out based on the general impacts of LULC change, water quality and soil erosion on it. The present study describes the successful use of remote sensing and GIS for monitoring, characterisation and conservation of soil and water resources of the study area, using integrated watershed management approach for sustainable development.Item Source apportionment, chemometric pattern recognition and health risk assessment of groundwater from southwestern Punjab, India(Springer, 2020) Kumar R.; Mittal S.; Sahoo P.K.; Sahoo S.K.The groundwater quality of southwestern Punjab, India, is a serious cause of concern due to the presence of chemical contaminants in it. However, limited studies of groundwater quality, sources of chemical contaminants and their health risks are available for the region. Hence, this study was conducted to investigate the source, distribution and potential health risk assessment of groundwater quality in three districts of southwestern Punjab, India. The spatial distribution of groundwater chemical contaminants and their potential health risks have been illustrated using inverse distance weighting interpolation technique. The concentration of fluoride (F?; ranged from 0.08 to 4.79 mg L−1) exceeded the WHO limit (1.5 µg L−1) in 80 and 50% samples collected from Bathinda and Ludhiana districts, respectively. The uranium (U) concentration ranged from 0.5 to 432 µg L−1 and shows ~ 85%, 75% and 10% of samples collected from Bathinda, Barnala and Ludhiana districts exceeded the WHO drinking water limit (30 µg L−1), respectively. The groundwater quality of the Bathinda district is a matter of concern due to elevated levels of alkalinity, hardness, fluoride, uranium and nitrate (NO3 ?). The principal component analysis shows close association between F? and U, which indicates their geogenic origin. Further, they also seem to be subordinately influenced by diffuse anthropogenic activities. The clustering of Cu and Pb with NO3 ? and SO4 2? indicates their anthropogenic origin. The non-carcinogenic health risk assessment indicates that F?, NO3 ? and U are the major health risk pollutants in the study area. The carcinogenic health risk of As and Cr exceeded the USEPA limits (10?6) in the entire study area, but observed to be more serious for the district Bathinda (10−3–10−5). The spatial distribution maps illustrate that the health risk for Bathinda district inhabitants is higher than Barnala and Ludhiana districts.