Department Of Environmental Science And Technology

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/84

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    Recent advances in nanotechnology for the improvement of conventional agricultural systems: A review
    (Elsevier B.V., 2023-05-18T00:00:00) Yadav, Neelam; Garg, Vinod Kumar; Chhillar, Anil Kumar; Rana, Jogender Singh
    Agriculture provides food and raw materials for the construction, energy, textile and pharmaceutical industries. Recently, agriculture is facing several concerns including climate change, soil degradation, decreasing land holding, urbanization, unsustainable use of natural resources, excessive use of agrochemicals, biodiversity loss, air pollution etc. are some of alarming issues which demand immediate interventions. Conventional agricultural practices could not handle these challenges as they are complex, labour intensive, time-consuming, less efficient, large requirements of crop nutrients and non-targeted. Furthermore, the inefficient use of agrochemicals poses a serious threat to the ecosystem. Therefore, scientists, farmers and policymakers are constantly searching for new techniques to combat existing challenges. Nanotechnology is emerging as the new savior of sustainable agriculture. Besides precision farming, nanosensors have been employed for the detection of crop pathogens and chemically harmful analytes in agri-fields. Moreover, nanorobotics and nano-barcodes have also shown a profound impact on agriculture practices to enhance the yield of agriculture. Further, tremendous applications of nanotools in agriculture are extensively implicated in bioimaging, sensing, photocatalysis and agrochemicals delivery. This review comprehensively discusses diverse tremendous applications of nanotechnology in overcoming the challenges of conventional agronomic practices and future prospects of nanotechnology in agriculture. � 2023 The Authors
  • Item
    Recent Advancement in Nanotechnology for the Treatment of Pharmaceutical Wastewater: Sources, Toxicity, and Remediation Technology
    (Springer Science and Business Media Deutschland GmbH, 2023-03-11T00:00:00) Kumar, Sandeep; Yadav, Sangita; Kataria, Navish; Chauhan, Amit Kumar; Joshi, Seema; Gupta, Renuka; Kumar, Parmod; Chong, Jun Wei Roy; Khoo, Kuan Shiong; Show, Pau Loke
    The textile, paper and pulp, distillery, and pharmaceutical industries are only a few of the many sectors that contribute significantly to the contamination of water bodies and their unsuitability for human use. Pharmaceuticals, which are credited with saving millions of lives in recent decades, have emerged as a new category of environmental hazard. Their prolonged presence in the environment has a number of negative effects, including gene toxicity, hormone interference, antibiotic resistance, the imposition of sex organs, and many others. To ensure that everyone in the world can access to uncontaminated and safe drinking water, it is important to treat pharmaceutical laden wastewater before discharge in fresh water body. Nanotechnology is getting significant attention due to enormous properties such as the high surface area to volume ratio, new optical properties, and desired shape. Nanomaterials might be a strong option for purifying water of a variety of environmental pollutants. This review also touches on several environmental aspects of pharmaceuticals, including (i) the current status of pharmaceuticals production and their use pattern, (ii) sources, occurrence, and transport behaviour of pharmaceuticals, (iii) analysis techniques and potential toxicity of pharmaceuticals and (iv) various conventional and advanced nanotechnology for water remediation. The present review is predominately designed to highlight the progress and major update in advantaged nanotechnology for remediation of pharmaceutical contaminated wastewater. The literature study (2015�2022) critically illustrated the recent pharmaceutical contaminations concerns and remediation efforts emphasizing nanotechnology like nanoadsorption, AOPs, nano-catalyst, electrochemical degradation and nanomembrane/nanofiltration technology. � 2023, The Author(s), under exclusive licence to Springer Nature Switzerland AG.
  • Item
    Recent advancements in hydrocarbon bioremediation and future challenges: a review
    (Springer Science and Business Media Deutschland GmbH, 2022-05-23T00:00:00) Kalia, Arun; Sharma, Samriti; Semor, Nisha; Babele, Piyoosh Kumar; Sagar, Shweta; Bhatia, Ravi Kant; Walia, Abhishek
    Petrochemicals are important hydrocarbons, which are one of the major concerns when accidently escaped into the environment. On one hand, these cause soil and fresh water pollution on land due to their seepage and leakage from automobile and petrochemical industries. On the other hand, oil spills occur during the transport of crude oil or refined petroleum products in the oceans around the world.�These hydrocarbon and petrochemical spills have not only posed a hazard to the environment and marine life, but also linked to numerous ailments like cancers and neural disorders. Therefore, it is very important to remove or degrade these pollutants before their hazardous effects deteriorate the environment. There are varieties of mechanical and chemical methods for removing hydrocarbons from polluted areas, but they are all ineffective and expensive. Bioremediation techniques provide an economical and eco-friendly mechanism for removing petrochemical and hydrocarbon residues from the affected sites. Bioremediation refers to the complete mineralization or transformation of complex organic pollutants into the simplest compounds by biological agents such as bacteria, fungi, etc. Many indigenous microbes present in nature are capable of detoxification of various hydrocarbons and their contaminants. This review presents an updated overview of recent advancements in various technologies used in the degradation and bioremediation of petroleum hydrocarbons, providing useful insights to manage such problems in an eco-friendly manner. � 2022, King Abdulaziz City for Science and Technology.
  • Item
    Detection and remediation of pollutants to maintain ecosustainability employing nanotechnology: A review
    (Elsevier Ltd, 2021-05-17T00:00:00) Yadav, Neelam; Garg, Vinod Kumar; Chhillar, Anil Kumar; Rana, Jogender Singh
    Environmental deterioration due to anthropogenic activities is a threat to sustainable, clean and green environment. Accumulation of hazardous chemicals pollutes soil, water and air and thus significantly affects all the ecosystems. This article highlight the challenges associated with various conventional techniques such as filtration, absorption, flocculation, coagulation, chromatographic and mass spectroscopic techniques. Environmental nanotechnology has provided an innovative frontier to combat the aforesaid issues of sustainable environment by reducing the non-requisite use of raw materials, electricity, excessive use of agrochemicals and release of industrial effluents into water bodies. Various nanotechnology based approaches including surface enhance scattering, surface plasmon resonance; and distinct types of nanoparticles like silver, silicon oxide and zinc oxide have contributed significantly in detection of environmental pollutants. Biosensing technology has also gained significant attention for detection and remediation of pollutants. Furthermore, nanoparticles of gold, ferric oxide and manganese oxide have been used for the on-site remediation of antibiotics, organic dyes, pesticides, and heavy metals. Recently, green nanomaterials have been given more attention to address toxicity issues of chemically synthesized nanomaterials. Hence, nanotechnology has provided a platform with tremendous applications to have sustainable environment for present as well as future generations. This review article will help to understand the fundamentals for achieving the goals of sustainable development, and healthy environment. � 2021 Elsevier Ltd