School Of Environment And Earth Sciences

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/83

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Anode modification: An approach to improve power generation in microbial fuel cells (MFCs)
    (Elsevier, 2023-01-27T00:00:00) Rani, Gini; Jaswal, Vijay; Yogalakshmi, K.N.
    Global energy demand is continuously increasing and has become a matter of concern. At present, 86% of the energy demand are accomplished by fossil fuels, but these deliver harmful effects on the environment by releasing CO2 in the atmosphere. Contrary, though nonrenewable resources such as solar, wind, and bioenergy possess minimal carbon footprints, they suffer from limitations of higher installation cost, low efficiency, and complex operation system. Since the past two decades, a relatively new sustainable technology, the microbial fuel cells (MFCs) have emerged with potential to convert the bond energy of molecules present in organic/inorganic waste into electric energy with the help of microbes. The electricity produced through the release of electrons during microbial degradation of organic waste can be used to offset the running cost of wastewater treatment plants. The performance of the MFCs is influenced by a number of cofactors, viz. type of reactor, nature of feed, microbial consortia, electrode material, and mode of operation. Anode plays a significant role in the power enhancement. Across the globe, various research groups are working to enhance the efficiency and power output of anode through its modification using conductive polymers (polypyrrole and polyaniline), metal oxides, nanomaterials, and many others. MFC operated with the electrochemically reduced graphene oxide modified anode evidenced a power density enhanced by 17.5 times as compared to carbon cloth. In the past 5 years, power density ranging from 6.12 to 6119mWm?2 was observed with various modified anode. The chapter will throw light on anode materials popularly used in MFC, method/techniques used for its modification to enhance energy output and limitations that restrict its wide-scale application. � 2023 Elsevier Inc. All rights reserved.
  • Item
    Enhancing the electrochemical performance of Fe3O4 nanoparticles layered carbon electrodes in microbial electrolysis cell
    (Elsevier Ltd, 2021-09-10T00:00:00) Rani, Gini; Krishna, Kadirvelu; Yogalakshmi, K.N.
    The present study assesses the performance of microbial electrolysis cell (MEC) to generate electric current using (I) uncoated/untreated electrodes and (II) Fe3O4 nanoparticles (FNPs) coated electrodes. The cyclic voltammetry (CV) reports highest conductivity of 58 Sm?1 in (II) while lowest (0.18 Sm?1) in (I) electrodes. The impedance spectroscopy confirms bulk resistivity of 375 k? in (I) electrodes while relatively lowest resistivity of 0.4 k? in (II) electrodes. Two sets of single chamber membraneless MECs is operated simultaneously at different applied voltage (300 mV, 500 mV and 700 mV): RI (uncoated electrodes) and RII, (FNP coated electrodes). The RII attains maximum current density and power density of 15.2 mAcm?1 and 10.6 mWcm?2 respectively at 0.7 V while RI achieves the maximum current density and power density of 4.03 mAcm?2 and 2.8 mWcm?2 respectively at same voltage. Moreover, the current density recorded in electrodes (II) is significantly higher compared to electrodes (I) measured using CV. The result suggests FNP to be an excellent catalyst which improves biosynthesis of electric current. The biologically active environment consisting of anaerobic electrogenic microbes supported biosynthesis/generation of high electric current along with other metabolites produced from the microbes mediated redox reaction. � 2021 Elsevier Ltd