School Of Environment And Earth Sciences
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/83
Browse
2 results
Search Results
Item Prospecting Ammoniphilus sp. JF isolated from agricultural fields for butachlor degradation(Springer Verlag, 2018) Singh, J.; Kadapakkam Nandabalan, Y.Butachlor is a chloroacetamide herbicide used worldwide for controlling weeds in plants of rice, corn, soybean and other crops. In this study, indigenous bacterial species Ammoniphilus sp. JF was isolated from the agricultural fields of Punjab and identified using 16S ribosomal RNA analysis. The bacteria utilized butachlor as the sole carbon source and showed complete degradation (100?mg/L) within 24?h of incubation. Two intermediate products, namely 1,2-benzenedicarboxylic acid, bis(2-methylpropyl) ester and 2,4-bis(1,1-dimethylethyl)-phenol were observed at the end of butachlor degradation. To the best of author?s knowledge, biodegradation of butachlor by indigenous Ammoniphilus sp. JF from the agricultural fields of Punjab has not been reported so far. ? 2018, Springer-Verlag GmbH Germany, part of Springer Nature.Item Laccase immobilized magnetic iron nanoparticles: Fabrication and its performance evaluation in chlorpyrifos degradation(Elsevier Ltd, 2017) Das, A.; Singh, J.; Yogalakshmi, K.N.Chlorpyrifos degradation was studied using laccase immobilized on magnetic iron nanoparticles (CENPs). The magnetic iron nanoparticles (MNPs) prepared by co-precipitation method were characterized using Transmission electron microscopy (TEM), Scanning electron microscopy- Energy dispersive spectroscopy (SEM-EDS) and Thermogravimetric analysis (TGA). The size of the nanoparticles ranged between 10 and 15 nm. The MNPs were coated with chitosan, surface modified with carbodiimide (EDAC) immobilized with laccase enzymes. The chlorpyrifos degradation studies were performed in batch studies under constant shaking for a period of 12 h. Results of the study showed that laccase immobilized on magnetic iron nanoparticles were effective in degrading more than 99% chlorpyrifos in 12 h at pH 7 and 60 ?C. In the overall degradation percentage, MNPs contributed to 32.3% of chlorpyrifos removal while ENPs resulted in 58.8% chlorpyrifos degradation. Immobilization of enzyme decreased the overall activity of the free enzyme. The CENPs showed 95% activity after five repeated washing and hence possess good reusability potential. ? 2017 Elsevier Ltd