School Of Environment And Earth Sciences

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/83

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Electrode modification and its application in microbial electrolysis cell
    (Elsevier, 2022-02-04T00:00:00) Rani, Gini; Banu, J. Rajesh; Yogalakshmi, K.N.
    The microbial electrolysis cell (MEC) is a sustainable technology that degrades organic substrate to produce hydrogen, an important energy carrier. However, its large-scale practical application is hampered because of several factors including electrodes material, reactor designs, substrates, and high-cost catalysts. Electrodes in particular are fundamental components which determine redox reaction and transport of electric charge. The surface of the electrode is where the equilibrium of redox reaction is established between the electrode surface and the electrolyte (substrate). Therefore, modification of electrodes is emphasized much recently. Modified electrodes have wide application as electrochemical devices, chemical analysis, biosensors, and many more. The electrode modification is carried out to bring improved properties in the electrode by altering its morphology or molecular structure. Apart from high conductivity and low resistance, the modified electrodes develop increased sensitivity, selectivity, corrosion resistance, electrochemical, and chemical stability. They also possess large potential window. Moreover, electrode modification using nanomaterials and conductive polymers favors electrocatalysis process. Studies related to MEC using modified electrodes have reported improved wastewater treatment and hydrogen production along with enhanced energy recovery. In the present chapter, the mechanics of electrode in an electrochemical system, in general, is explained in detail. Moreover, the overview of different techniques for the modification of the electrodes and their applications in MEC has been expensively entailed. � 2022 Elsevier Inc.
  • Thumbnail Image
    Item
    Treatment of seafood processing wastewater using upflow microbial fuel cell for power generation and identification of bacterial community in anodic biofilm
    (Academic Press, 2016) Jayashree, C.; Tamilarasan, K.; Rajkumar, M.; Arulazhagan, P.; Yogalakshmi, K.N.; Srikanth, M.; Banu, J.R.
    Tubular upflow microbial fuel cell (MFC) utilizing sea food processing wastewater was evaluated for wastewater treatment efficiency and power generation. At an organic loading rate (OLR) of 0.6 g d-1, the MFC accomplished total and soluble chemical oxygen demand (COD) removal of 83 and 95%, respectively. A maximum power density of 105 mW m-2 (2.21 W m-3) was achieved at an OLR of 2.57 g d-1. The predominant bacterial communities of anode biofilm were identified as RB1A (LC035455), RB1B (LC035456), RB1C (LC035457) and RB1E (LC035458). All the four strains belonged to genera Stenotrophomonas. The results of the study reaffirms that the seafood processing wastewater can be treated in an upflow MFC for simultaneous power generation and wastewater treatment. ? 2016 Elsevier Ltd.