School Of Environment And Earth Sciences
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/83
Browse
3 results
Search Results
Item Climate Change Impact on Major River Basins in the Indian Himalayan Region: Risk Assessment and Sustainable Management(Springer International Publishing, 2023-03-10T00:00:00) Amrutha, K.; Patnaik, Rasmi; Sandeep, A.S.; Pattanaik, Jitendra KumarBillions of people relay on water resources of the Himalayan region for drinking, irrigation, and other domestic purposes. Abundance of natural resources makes this region suitable for human settlements, despite the fact that the area experiences frequent natural hazards. Water resources including major rivers are one of the important components, responsible for high biodiversity of the Himalayas and its role in global atmospheric circulation. Recent climate changes have proved to affect the precipitation pattern and ice cover of the Himalayas, causing variations in the dynamics of rivers in the area. Climate change�induced variation in river flow quantity, timing, and unpredictability raises the danger of ecological changes and has a negative impact on aquatic life and the ecosystem depending on rivers. Agriculture is one important sector that is at highest risk due to climate change. This is a serious concern as the runoff patterns of the rivers are mainly determined by the precipitation pattern and ice cover in the upper reaches. Reduction in ice cover reduces the water storage capacity of the Himalayas, and fluctuations in the precipitation pattern cause floods and droughts. The increased frequency of natural hazards including floods and droughts affects the economy and is a threat to people�s life. Climate change effects on water resources, namely, Himalayan snow and ice reservoirs and lake and river systems and the risk associated with it, can be monitored using different hydrological models. To cover vast geographical areas of the Himalayan region, adequate hydrological observatories need to be installed in order to monitor and record time series data of the hydrological parameters. Systematic monitoring will help to predict how climate change will affect water resources in the future. Sustainable management of local resources based on suitable practices, adaptation strategies, and need-specific policies relevant to basin climate can further reduce frequent climate change-related impacts, risk, and vulnerability. � The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2023.Item Climate Change Adaptation, Risk Management and Sustainable Practices in the Himalaya(Springer International Publishing, 2023-03-10T00:00:00) Sharma, Sanjeev; Kuniyal, Jagdish Chandra; Chand, Pritam; Singh, PardeepThis volume analyzes ecological and socio-economic risks due to climate change in the Himalayan mountain ecosystems, communities, and proposes adaptation strategies and sustainability practices. In order to better understand the potential actions required to improve natural resource conservation and the development of mountain people's livelihoods. The authors discuss the current status of local knowledge system on various environmental aspects of conservation and sustainable use of mountain resources in the Himalaya. The book addresses the institutional capacities, gaps, and priority areas of capacity building to strengthen policies and governance in regard to climate change, landuse management, biodiversity conservation, and sustainable management in the Himalayan region. The aim of this book is to enhance coordination building among policymakers, planners, mountain communities to foster collaboration between different stakeholders by understanding local perceptions of climate change as well as variability issues, and establishing adaptation strategies to cope with these impacts. The chapters incorporate theoretical and applied aspects, and may serve as baseline information for the sustainability of mountain ecosystems through the contribution of multidisciplinary and interdisciplinary expertise from the Himalayan region. The book will be useful for students, teachers, and researchers working in different areas pertaining to mountain ecosystems, as well as policymakers and planners working on issues related to the sustainability of the mountain ecosystem. � The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2023.Item Reconstruction of post-little ice age glacier recession in the Lahaul Himalaya, north-west India(Taylor and Francis Ltd., 2022-12-13T00:00:00) Deswal, Sanjay; Sharma, Milap Chand; Saini, Rakesh; Chand, Pritam; Prakash, Satya; Kumar, Pawan; Barr, Iestyn David; Latief, Syed Umer; Dalal, Padma; Bahuguna, I.M.Understanding past glaciation and deglaciation is vital for assessing present-day glacier dynamics and response to climate change. We focus on reconstructing past glacier fluctuations in Lahaul, north-west India, a region located between arid Ladakh and the humid the Pir-Panjal range. We focus specifically on six glaciers in the Miyar and Thirot catchments of varying size, aspect and debris cover. To reconstruct past terminus fluctuations of these glaciers, we used repeat terrestrial photography and historical archives as data sets and mapped the terminus positions and latero-terminal moraines in the field along with glacier terminus mapping from high to medium resolution satellite images (e.g. Corona, Hexagon, Landsat and LISS IV). Results show that since the little ice age, all the studied glaciers have experienced terminus retreat and area loss, with average values of 1.46 and 0.9 km2, respectively. Precipitation data show a statistically significant decreasing trend during the last century with an increasing trend in annual average maximum (T max) and minimum (T min) temperature. This warming trend is more statistically significant for T min. Although total ice loss at the six studied glaciers is considerable (5.48 km2), this varies both spatially (i.e. from glacier to glacier) and temporally. We attribute this variability to topographic controls such as glacier hypsometry and another non-climatic factor, i.e. varying degree of debris cover. � 2022 Swedish Society for Anthropology and Geography.