School Of Environment And Earth Sciences
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/83
Browse
2 results
Search Results
Item Plant-microbe association to improve phytoremediation of heavy metal(Elsevier, 2022-08-05T00:00:00) Hansda, Arti; Kisku, Prem Chand; Kumar, Vipin; AnshumaliUrge of development through industrialization has led to disturbance/misbalance of the ecosystem by the release of various contaminants (heavy metals, metalloids, organic pollutants, dyes, etc.). Unlike organic contaminants, heavy metals and metalloids pose a serious threat to the flora and fauna of the surroundings due to their immutable nature. The high cost and nonecofriendly nature of physicochemical methods used for heavy metal removal lead to the innovation of the biological technique �bioremediation.� Phytoremediation is one of the bioremediation methods which use accumulator/hyperaccumulator plants for heavy metal removal from soil, sediments, or water. The phytoremediation process by using plants only is time-consuming and may result in reduced metal uptake in high levels of pollutants. High pollutant concentration may result in toxicity to the plants used for remediation purposes. This situation may be overcome by the plant-microbe association, which will result in improved plant growth and heavy metal sequestration. Various rhizospheric processes are responsible for heavy metal removal by secretion of root exudates (siderophores, carboxylic acid ions) and phytohormones, which affect the mobile and bioavailable form of heavy metals. The plant-microbe association may help in enhancing or reducing the mobility and bioavailability of heavy metal, as well as result in improved plant growth, which could result in a significant speedup of the phytoremediation process. This review enlightens the role of plant growth-promoting bacteria (PGPB) in the acceleration of phytoremediation. The metal uptake mechanisms are also discussed. � 2022 Elsevier Inc. All rights reserved.Item Sustainable remediation of heavy metals(Elsevier, 2021-04-30T00:00:00) Kumar, Hemant; Sahoo, Prafulla Kumar; Mittal, SunilHeavy metal contamination of soil and water bodies has been recognized as a potential threat to the entire biosphere, which accelerated after the industrial revolution and is presumed to be one of the major environmental challenges worldwide in the 21st century. The major health hazards associated with heavy metals include various types of cancers, organ damage, cardiovascular disease, nervous system disorders, etc. Several conventional techniques have been used for decades for the remediation of these noxious elements, but they have their own setbacks. The physical and chemical techniques are associated with high cost, intensive labor requirement, and ecologic destructive effect, which demand the search for alternative remediation techniques. Recently, biological remediation techniques, such as phytoremediation, bioremediation, biosorption, and microbial fuel cell-based techniques have come up as strong contenders and attracted more attention from researchers. Most of these techniques are considered as sustainable methods because of being cheaper, eco-friendly, and safer as compared with conventional methods. This chapter is an effort to provide an update on various remediation techniques and their advantages and disadvantages, with special focus on sustainable methods. This was carried out using the online database of Scopus, Web of Science, PupMed, Medline, ScienceDirect, Springer, Wiley Online Library, and Google Scholar, and all the available information from the past three decades were summarized and discussed. Also, effective sustainable technologies and their future prospects were highlighted. � 2021 Elsevier Inc.