School Of Environment And Earth Sciences
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/83
Browse
4 results
Search Results
Item Unveiling Nature�s Resilience: Exploring Vegetation Dynamics during the COVID-19 Era in Jharkhand, India, with the Google Earth Engine(Multidisciplinary Digital Publishing Institute (MDPI), 2023-09-08T00:00:00) Ahmad, Tauseef; Gupta, Saurabh Kumar; Singh, Suraj Kumar; Meraj, Gowhar; Kumar, Pankaj; Kanga, ShrutiThe Severe Acute Respiratory Syndrome Coronavirus Disease 2019 (COVID-19) pandemic has presented unprecedented challenges to global health and economic stability. Intriguingly, the necessary lockdown measures, while disruptive to human society, inadvertently led to environmental rejuvenation, particularly noticeable in decreased air pollution and improved vegetation health. This study investigates the lockdown�s impact on vegetation health in Jharkhand, India, employing the Google Earth Engine for cloud-based data analysis. MODIS-NDVI data were analyzed using spatio-temporal NDVI analyses and time-series models. These analyses revealed a notable increase in maximum vegetation greenery of 19% from April 2019 to 2020, with subsequent increases of 13% and 3% observed in March and May of the same year, respectively. A longer-term analysis from 2000 to 2020 displayed an overall 16.7% rise in vegetation greenness. While the maximum value remained relatively constant, it demonstrated a slight increment during the dry season. The Landsat data Mann�Kendall trend test reinforced these findings, displaying a significant shift from a negative NDVI trend (1984�2019) to a positive 17.7% trend (1984�2021) in Jharkhand�s north-west region. The precipitation (using NASA power and Merra2 data) and NDVI correlation were also studied during the pre- and lockdown periods. Maximum precipitation (350�400 mm) was observed in June, while July typically experienced around 300 mm precipitation, covering nearly 85% of Jharkhand. Interestingly, August 2020 saw up to 550 mm precipitation, primarily in Jharkhand�s southern region, compared to 400 mm in the same month in 2019. Peak changes in NDVI value during this period ranged between 0.6�0.76 and 0.76�1, observed throughout the state. Although the decrease in air pollution led to improved vegetation health, these benefits began to diminish post-lockdown. This observation underscores the need for immediate attention and intervention from scientists and researchers. Understanding lockdown-induced environmental changes and their impact on vegetation health can facilitate the development of proactive environmental management strategies, paving the way towards a sustainable and resilient future. � 2023 by the authors.Item Status of Air Pollution during COVID-19-Induced Lockdown in Delhi, India(MDPI, 2022-12-13T00:00:00) Singh, Harikesh; Meraj, Gowhar; Singh, Sachchidanand; Shrivastava, Vaibhav; Sharma, Vishal; Farooq, Majid; Kanga, Shruti; Singh, Suraj Kumar; Kumar, PankajTo monitor the spread of the novel coronavirus (COVID-19), India, during the last week of March 2020, imposed national restrictions on the movement of its citizens (lockdown). Although India�s economy was shut down due to restrictions, the nation observed a sharp decline in particulate matter (PM) concentrations. In recent years, Delhi has experienced rapid economic growth, leading to pollution, especially in urban and industrial areas. In this paper, we explored the linkages between air quality and the nationwide lockdown of the city of Delhi using a geographic information system (GIS)-based approach. Data from 37 stations were monitored from 12 March, 2020 to 2 April, 2020 and it was found that the Air Quality Index for the city was almost reduced by 37% and 46% concerning PM2.5 and PM10, respectively. The study highlights that, in regular conditions, the atmosphere�s natural healing rate against anthropogenic activities is lower, as indicated by a higher AQI. However, during the lockdown, this sudden cessation of anthropogenic activities leads to a period in which the natural healing rate is greater than the induced disturbances, resulting in a lower AQI, and thus proving that this pandemic has given a small window for the environment to breathe and helped the districts of Delhi to recover from serious issues related to bad air quality. If such healing windows are incorporated into policy and decision-making, these can prove to be effective measures for controlling air pollution in heavily polluted regions of the World. � 2022 by the authors.Item Substantial changes in Gaseous pollutants and health effects during COVID-19 in Delhi, India(PeerJ Inc., 2023-01-09T00:00:00) Singh, Bhupendra; Pandey, Puneeta; Wabaidur, Saikh Mohammad; Avtar, Ram; Kumar, Pramod; Rahman, ShakilurBackground. Coronavirus disease has affected the entire population worldwide in terms of physical and environmental consequences. Therefore, the current study demonstrates the changes in the concentration of gaseous pollutants and their health effects during the COVID-19 pandemic in Delhi, the national capital city of India. Methodology. In the present study, secondary data on gaseous pollutants such as nitrogen dioxide (NO2), carbon monoxide (CO), sulfur dioxide (SO2), ammonia (NH3), and ozone (O3) were collected from the Central Pollution Control Board (CPCB) on a daily basis. Data were collected from January 1, 2020, to September 30, 2020, to determine the relative changes (%) in gaseous pollutants for pre-lockdown, lockdown, and unlockdown stages of COVID-19. Results. The current findings for gaseous pollutants reveal that concentration declined in the range of 51%�83% (NO), 40%�69% (NOx), 31%�60% (NO2), and 25%�40% (NH3) during the lockdown compared to pre-lockdown period, respectively. The drastic decrease in gaseous pollutants was observed due to restricted measures during lockdown periods. The level of ozone was observed to be higher during the lockdown periods as compared to the pre-lockdown period. These gaseous pollutants are linked between the health risk assessment and hazard identification for non-carcinogenic. However, in infants (0�1 yr), Health Quotient (HQ) for daily and annual groups was found to be higher than the rest of the exposed group (toddlers, children, and adults) in all the periods. Conclusion. The air quality values for pre-lockdown were calculated to be ��poor category to ��very poor�� category in all zones of Delhi, whereas, during the lockdown period, the air quality levels for all zones were calculated as ��satisfactory,�� except for Northeast Delhi, which displayed the ��moderate�� category. The computed HQ for daily chronic exposure for each pollutant across the child and adult groups was more than 1 (HQ > 1), which indicated a high probability to induce adverse health outcomes. � Copyright 2023 Singh et al.Item COVID-19 pandemic: An outlook on its impact on air quality and its association with environmental variables in major cities of Punjab and Chandigarh, India(Bellwether Publishing, Ltd., 2020-10-31T00:00:00) Sahoo, Prafulla Kumar; Chauhan, Amit Kumar; Mangla, Sherry; Pathak, Ashok Kumar; Garg, V.K.The present study aims to evaluate the impact of COVID-19 lockdown on air quality and to explore the association of daily COVID-19 confirmed cases with meteorological parameters and criteria pollutants in the major cities of Punjab and Chandigarh, India during the different phase of pre-lockdown (March 1 to March 24), lockdown (1.0, 2.0, 3.0, 4.0; March 25 to May 31), and unlock (1.0, 2.0; > June 1) in 2020. Our results show that the COVID-19 lockdown has drastically improved the quality of air in major cities of Punjab and Chandigarh. Compared to pre-lockdown, maximum reduction of PM2.5 and PM10 levels (up to ?52 and ?53.5%, respectively) was witnessed during lockdown 1.0, but their levels were rising again during the last phase of lockdown and unlock phases. This is due to more relaxation and traffic returned on the road. Among other pollutants, NO2 also reduced during lockdown 1.0, but remained variable between cities and different phases of lockdown and unlock periods. However, surface-level ozone resulted in an overall increase trend during the lockdown and unlock phases. Regarding the relationship between COVID-19 and meteorological parameters, Spearman correlation test shows that ambient temperature is positively correlated with COVID-19 daily confirmed cases (r < 0.77, p < 0.01). This result indicates that the study region�s hot tropical weather is less effective in controlling the spread of COVID-19. Relative humidity and wind speed are also weakly correlated with COVID-19. Furthermore, among criteria pollutants, PM2.5 and PM10 are positively correlated (r < 0.55, p < 0.01) with COVID-19 pandemic, especially in Jalandhar and Ludhiana, suggesting that these pollutants could lead to the spreading of the virus. However, further in-depth studies are required to validate this finding. The results of this study can contribute to the understanding of the role of environmental factors in the transmission of COVID-19 in tropical and sub-tropical countries like India, Brazil, etc. This study also indicates that the temporarylockdown like COVID-19 can be emerged as an effective way to control environmental imbalancein the study area, as well as in other areas. � 2020 Informa UK Limited, trading as Taylor & Francis Group.