School Of Environment And Earth Sciences

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/83

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Statistical optimization of operating parameters of microbial electrolysis cell treating dairy industry wastewater using quadratic model to enhance energy generation
    (Elsevier Ltd, 2022-04-28T00:00:00) Rani, Gini; Banu, J. Rajesh; Kumar, Gopalakrishnan; Yogalakshmi, K.N.
    The performance of Microbial electrolysis cell (MEC) is affected by several operating conditions. Therefore, in the present study, an optimization study was done to determine the working efficiency of MEC in terms of COD (chemical oxygen demand) removal, hydrogen and current generation. Optimization was carried out using a quadratic mathematical model of response surface methodology (RSM). Thirteen sets of experimental runs were performed to optimize the applied voltage and hydraulic retention time (HRT) of single chambered batch fed MEC operated with dairy industry wastewater. The operating conditions (i.e) an applied voltage of 0.8 V and HRT of 2 days that showed a maximum COD removal response was chosen for further studies. The MEC operated at optimized condition (HRT- 2 days and applied voltage- 0.8 V) showed a COD removal efficiency of 95 � 2%, hydrogen generation of 32 � 5 mL/L/d, Power density of 152 mW/cm2 and current generation of 19 mA. The results of the study implied that RSM, with its high degree of accuracy can be a reliable tool for optimizing the process of wastewater treatment. Also, dairy industry wastewater can be considered to be a potential source to generate hydrogen and energy through MEC at short HRT. � 2022 Hydrogen Energy Publications LLC
  • Thumbnail Image
    Item
    Performance of magnetic iron nanoparticle decorated electrodes single chambered MEC fed with combined leachate and dairy industry wastewater
    (Central University of Punjab, 2017) Deepika; Yogalakshmi, K.N.
    Increased human activity and consumption of natural energy resources have led to decline in the stock of fossil fuels. The current technologies used for energy generation are not environment friendly. Microbial electrolysis cell (MEC) represents a new approach for harnessing the energy contained in the organic matter of wastewater. It is a type of bioelectrochemical systems in which chemical energy stored in organic compounds are converted to biogas such as hydrogen through biocatalytic oxidation by microorganisms. But it still suffers from the lack of efficiency in terms of hydrogen production and current generation. Previous studies have demonstrated that the electrodes coated with nanoparticles such as Fe, Au, Pd, and Ni nanoparticles have the potential to enhance energy recovery in MEC. Hence, the present study aims to use single chambered membrane-less microbial electrolysis cell with magnetic iron nanoparticle coated electrodes for treating combined leachate and dairy industry wastewater. The performance of the MEC was assessed through COD removal, current and biogas generation at an applied voltage of 0.8 V and HRT of 48 hours. Results demonstrated that the maximum current density achieved by nanoparticles decorated electrodes was 3.86 times higher than iv generated by plain electrodes. The highest COD removal efficiency of 96.5% was achieved at OLR equal to 17.14 gCOD/L/d. The maximum coulombic efficiency of 155% represents the conversion of maximum chemical energy stored in the combined wastewater into electrical energy. The hydrogen production rate of 3.192 L/L/d was achieved in this study. The results shows that magnetic iron nanoparticle coated electrodes enhance the current generation and COD removal in single chambered MEC operated with combined leachate and dairy wastewater treatment.
  • Item
    Polyelectrolyte modificaion of microfiltration for removal of arsenic lons
    (Central University of Punjab, 2017) Bala, Bindu; Yogalakshmi, K.N.
    Increased human activity and consumption of natural energy resources have led to decline in the stock of fossil fuels. The current technologies used for energy generation are not environment friendly. Microbial electrolysis cell (MEC) represents a new approach for harnessing the energy contained in the organic matter of wastewater. It is a type of bioelectrochemical systems in which chemical energy stored in organic compounds are converted to biogas such as hydrogen through biocatalytic oxidation by microorganisms. But it still suffers from the lack of efficiency in terms of hydrogen production and current generation. Previous studies have demonstrated that the electrodes coated with nanoparticles such as Fe, Au, Pd, and Ni nanoparticles have the potential to enhance energy recovery in MEC. Hence, the present study aims to use single chambered membrane-less microbial electrolysis cell with magnetic iron nanoparticle coated electrodes for treating combined leachate and dairy industry wastewater. The performance of the MEC was assessed through COD removal, current and biogas generation at an applied voltage of 0.8 V and HRT of 48 hours. Results demonstrated that the maximum current density achieved by nanoparticles decorated electrodes was 3.86 times higher than iv generated by plain electrodes. The highest COD removal efficiency of 96.5% was achieved at OLR equal to 17.14 gCOD/L/d. The maximum coulombic efficiency of 155% represents the conversion of maximum chemical energy stored in the combined wastewater into electrical energy. The hydrogen production rate of 3.192 L/L/d was achieved in this study. The results shows that magnetic iron nanoparticle coated electrodes enhance the current generation and COD removal in single chambered MEC operated with combined leachate and dairy wastewater treatment.