School Of Basic And Applied Sciences
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17
Browse
2 results
Search Results
Item Targeted mutagenesis of two homologous ATP-binding cassette subfamily G (ABCG) genes in tomato confers resistance to parasitic weed Phelipanche aegyptiaca(Springer Japan, 2021-03-11T00:00:00) Bari, Vinay Kumar; Nassar, Jackline Abu; Meir, Ayala; Aly, RadiPhelipanche aegyptiaca and Orobanche spp. are obligate plant root-parasitic weeds that cause extensive damage in agricultural crop plants. Their germination requires exposure to strigolactones (SLs) exuded by the host plant roots. Here we studied genes in the host plant tomato involved in SL exudation and their impact on parasitic weeds. We provide evidence that CRISPR/Cas9-mediated targeted mutagenesis of two homologous ATP-binding cassette subfamily G (ABCG) genes, ABCG44 (Solyc08g067610) and ABCG45 (Solyc08g067620), in tomato significantly reduces SLs in the root exudate and abolishes germination of the root-parasitic weed P. aegyptiaca. Based on genome sequence similarity between ABCG44 and ABCG45, a 20-bp target sequence in their exon region was selected to design single guide RNA targeting both genes using CRISPR/Cas9. The plant binary vector constructs harboring the specific Cas9 and single guide RNA were transformed into tomato. Selected T0 mutated tomato plants showed different types of deletions at both gene loci. Genotype analysis of T1 plants suggested stable inheritance of the introduced mutations without any potential off-target effects. The phenotype of Cas9-mutated plants included increased shoot branching and growth of axillary buds, and reduced length of primary stems. Interestingly, reduced germination of P. aegyptiaca resulted from a decrease in the SL orobanchol in the root exudate of Cas9-mutated plants; however, orobanchol content in the root extract was unchanged compared to control plants. Moreover, in single and double ABCG mutants, expression of the SL-biosynthesis genes CCD8 and MAX1 decreased. The current study offers insights into CRISPR-mediated mutagenesis of ABCG genes, which could serve as an efficient control method to prevent root-parasitic weed germination. � 2021, The Botanical Society of Japan.Item Using biotechnological approaches to develop crop resistance to root parasitic weeds(Springer Science and Business Media Deutschland GmbH, 2021-04-12T00:00:00) Aly, Radi; Matzrafi, Maor; Bari, Vinay KumarMain conclusion: New transgenic and biotechnological approaches may serve as a key component in achieving crop resistance to root parasitic weeds. Abstract: Root parasitic weeds inflict severe damage to numerous crops, reducing yield quantity and quality. A lack of new sources of resistance limits our ability to manage newly developing, more virulent races. Having no effective means to control the parasites in most crops, innovative biotechnological solutions are needed. Several novel biotechnological strategies using regulatory RNA molecules, the CRISPR/Cas9 system, and T-DNA insertions have been acknowledged for engineering resistance against parasitic weeds. Significant breakthroughs have been made over the years in deciphering the plant genome and its functions, including the genomes of parasitic weeds. However, the basis of biotechnological strategies to generate host resistance to root parasitic weeds needs to be further developed. Gene-silencing and editing tools should be used to target key processes of host�parasite interactions, such as strigolactone biosynthesis and signaling, haustorium development, and degradation and penetration of the host cell wall. In this review, we summarize and discuss the main areas of research leading to the discovery and functional analysis of genes involved in host-induced gene silencing that target key parasite genes, transgenic host modification, and host gene editing to generate sustainable resistance to root parasitic weeds. � 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.