School Of Basic And Applied Sciences
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17
Browse
4 results
Search Results
Item High efficient carbon coated TiO2electrode for ultra-capacitor applications(IOP Publishing Ltd, 2021-10-08T00:00:00) Tanwar, Shweta; Arya, Anil; Singh, Nirbhay; Yadav, Bal Chandra; Kumar, Vijay; Rai, Atma; Sharma, A.L.The present paper reports the investigation of structural, optical, chemical bonding, and electrical properties of the carbon black (CB)/TiO2 composite synthesized via the standard sol-gel method. The structural and morphological properties have been investigated using x-ray diffraction and also field emission scanning electron microscopy to confirm the formation of the nanocomposite. The electrochemical performance of the two-electrode symmetric fabricated supercapacitor (SC) has been examined by complex impedance spectroscopy, cyclic voltammetry, and galvanostatic charge-discharge (GCD). The electrode CT15 (15% TiO2 in CB matrix) shows a high specific capacitance of 236 F g-1 at scan rate 10 mV s-1. The GCD illustrates good specific capacitance retention of 90.3% after 10 000 cycles and with energy density and power density values as 22 Wh kg-1 and 625 kW kg-1 respectively (at 1 A g-1) in the voltage window of 1.2 V. The CT15 electrode cell demonstrates superior electrochemical performance as compared to other electrodes. Electrochemical impedance spectroscopy (EIS) demonstrates the capacitive behaviour of the composite electrode with a low value of resistance. The SC cell having optimum performance has been chosen to demonstrate the glowing red light emitting diode. A mechanism has also been proposed based on received data parameters to validate the SC performance. � 2021 IOP Publishing Ltd.Item Transition metal dichalcogenide (TMDs) electrodes for supercapacitors: A comprehensive review(IOP Publishing Ltd, 2021-04-24T00:00:00) Tanwar, Shweta; Arya, Anil; Gaur, Anurag; Sharma, A.L.As globally, the main focus of the researchers is to develop novel electrode materials that exhibit high energy and power density for efficient performance energy storage devices. This review covers the up-to-date progress achieved in transition metal dichalcogenides (TMDs) (e.g. MoS2, WS2, MoSe2, and WSe2) as electrode material for supercapacitors (SCs). The TMDs have remarkable properties like large surface area, high electrical conductivity with variable oxidation states. These properties enable the TMDs as the most promising candidates to store electrical energy via hybrid charge storage mechanisms. Consequently, this review article provides a detailed study of TMDs structure, properties, and evolution. The characteristics technique and electrochemical performances of all the efficient TMDs are highlighted meticulously. In brief, the present review article shines a light on the structural and electrochemical properties of TMD electrodes. Furthermore, the latest fabricated TMDs based symmetric/asymmetric SCs have also been reported. � 2021 IOP Publishing Ltd.Item Polymer Electrolytes: Development and Supercapacitor Application(wiley, 2021-03-26T00:00:00) Arya, Anil; Gaur, Anurag; Sharma, A.L.Due to the increasing demand for energy globally and the reduction of the traditional energy sources, the development of an efficient and sustainable energy source has grabbed the attention of researchers. So, supercapacitor (SC) is a crucial energy storage device that has gained attention in the energy sector. One important part of any SC cell is the electrolyte. The electrolyte plays an important role in the ion migration in the device between electrodes. Hence, polymer electrolytes are fascinating candidates and fulfil the need due to better mechanical properties and ion dynamics. Consequently, the present chapter will start with a brief introduction to supercapacitors, followed by characteristics of electrolyte, types and modification strategies for the electrolyte. Further, the important preparation techniques and advanced characterization techniques are briefed. Finally, some important developments made using the polymer electrolytes for SC cell are presented (publications and patents). � 2021 Scrivener Publishing LLC.Item Construction of three-dimensional marigold flower-shaped Ni3V2O8 for efficient solid-state supercapacitor applications(John Wiley and Sons Inc, 2022-06-13T00:00:00) Haldar, Krishna K.; Biswas, Rathindranath; Arya, Anil; Ahmed, Imtiaz; Tanwar, Shweta; Sharma, Achchhe LalDevelopment of binary spinel-type mixed metal oxide and fabrication various morphological heterostructure nanomaterials having two distinct metals paid a wide attention in emerging field. Here, we prepared three-dimensional (3D) marigold flower-like Ni3V2O8 structure via a simple and facile technique for electrochemical supercapacitor applications. 3D Ni3V2O8 with thick petals as cathode materials exhibits high specific capacitance of 263.12 F g?1 at a scan rate of 0.5�mA cm?2. The high energy density of 32.98 W h kg?1 at power density of 189.96 W kg?1 is obtained by the cathode formation of marigold flower-shaped Ni3V2O8, indicating excellent ions accessibility and large charge storage ability of Ni3V2O8 structure. It is also observed that even after 5000 cycles charging-discharging profile analysis, Ni3V2O8 cathode retains 32% of its initial capacitance along with 100% Coulombic efficiency. This higher capacitance retention strengthens its adoption as a potential candidate for supercapacitor application. � 2022 John Wiley & Sons Ltd.