School Of Basic And Applied Sciences

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Comparative transcriptome profiling reveals the reprogramming of gene networks under arsenic stress in Indian mustard.
    (Canadian Science Publishing, 2019) Thakur, Sapna; Choudhary, Shruti; Dubey, Preeti; Bhardwaj, Pankaj
    Arsenic is a widespread toxic metalloid that is classified as a class I carcinogen known to cause adverse health effects in humans. In the present study, we investigated arsenic accumulation potential and comparative gene expression in Indian mustard. The amount of arsenic accumulated in shoots varied in the range of 15.99-1138.70 mg/kg on a dry weight basis among five cultivars. Comparative expression analysis revealed 10?870 significantly differentially expressed genes mostly belonging to response to stress, metabolic processes, signal transduction, transporter activity, and transcription regulator activity to be up-regulated, while most of the genes involved in photosynthesis, developmental processes, and cell growth were found to be down-regulated in arsenic-treated tissues. Further, pathway analysis using the KEGG Automated Annotation server (KAAS) revealed a large-scale reprogramming of genes involved in genetic and environmental information processing pathways. Top pathways with maximum KEGG orthology hits included carbon metabolism (2.5%), biosynthesis of amino acids (2.1%), plant hormone signal transduction (1.4%), and glutathione metabolism (0.6%). A transcriptomic investigation to understand the arsenic accumulation and detoxification in Indian mustard will not only help to improve its phytoremediation efficiency but also add to the control measures required to check bioaccumulation of arsenic in the food chain.
  • Thumbnail Image
    Item
    Comparative Transcriptome Profiling Under Cadmium Stress Reveals the Uptake and Tolerance Mechanism in Brassica juncea
    (Springer, 2019) Thakur, Sapna; Choudhary, Shurti; Bhardwaj, Pankaj
    Cadmium (Cd) is a biologically non-essential and phytotoxic heavy metal pollutant. In this study, we estimated the Cd accumulation potential of Indian mustard and identified factors responsible for Cd uptake, tolerance, and detoxification. Eight transcriptomic libraries were sequenced and ??230 million good quality reads were generated. The alignment rate against B. juncea reference genome V1.5 varied in the range of 85.03-90.06%. Comparative expression analysis using DESeq2 revealed 11,294 genes to be significantly differentially expressed under Cd treatment. The agriGO singular enrichment analysis revealed genes related to response to chemical, oxidative stress, transport, and secondary metabolic process were upregulated, whereas multicellular organismal development, developmental process, and photosynthesis were downregulated by Cd treatment. Furthermore, 616 membrane transport proteins were found to be significantly differentially expressed. Cd-related transporters such as metal transporter (Nramp1), metal tolerance protein (MTPC2, MTP11), cadmium-transporting ATPase, and plant cadmium resistance protein (PCR2, PCR6) were upregulated whereas cadmium/zinc-transporting ATPase (HMA2, HMA3, HMA4), high-affinity calcium antiporter (CAX1), and iron transport protein (IRT1) were downregulated by Cd treatment. A total of 332 different gene-networks affected by Cd stress were identified using KAAS analysis. Various plant hormones signaling cascades were modulated suggesting their role in Cd stress tolerance. The regulation overview using MapMan analysis also revealed gene expression related to plant hormones, calcium regulation, and MAP kinases were altered under Cd stress.