School Of Basic And Applied Sciences
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17
Browse
31 results
Search Results
Item Unraveling the Role of Orbital Interaction in the Electrochemical HER of the Trimetallic AgAuCu Nanobowl Catalyst(American Chemical Society, 2023-03-24T00:00:00) Biswas, Rathindranath; Dastider, Saptarshi Ghosh; Ahmed, Imtiaz; Barua, Sourabh; Mondal, Krishnakanta; Haldar, Krishna KantaUnraveling the origins of the electrocatalytic activity of composite nanomaterials is crucial but inherently challenging. Here, we present a comprehensive investigation of the influence of different orbitals� interaction in the AuAgCu nanobowl model electrocatalyst during the hydrogen evolution reaction (HER). According to our theoretical study, AgAuCu exhibits a lower energy barrier than AgAu and AgCu bimetallic systems for the HER, suggesting that the trimetallic AgAuCu system interacts optimally with H*, resulting in the most efficient HER catalyst. As we delve deeper into the HER activity of AgAuCu, it was observed that the presence of Cu allows Au to adsorb the H* intermediate through the hybridization of s orbitals of hydrogen and s, dx2-y2, and dz2 orbitals of Au. Such orbital interaction was not present in the cases of AgAu and AgCu bimetallic systems, and as a result, these bimetallic systems exhibit lower HER activities. � 2023 American Chemical Society.Item Reduced graphene oxide doped tellurium nanotubes for high performance supercapacitor(Frontiers Media S.A., 2022-10-20T00:00:00) Rani, Pinki; Alegaonkar, Ashwini P.; Biswas, Rathindranath; Jewariya, Yogesh; Kanta Haldar, Krishna; Alegaonkar, Prashant S.Supercapacitors have been achieving great interest in energy storage systems for the past couple of decades. Such devices with superior performance, mainly, depending on the material architecture of the electrodes. We report on the preparation of Tellurium nanotubes (Te-tubes diameter ?100�nm and length ?700�nm), with variable doping of conducting network reduced graphene oxide (rGO) to fabricate high-performance electrode characteristics of rGO @ Te. The prepared material was characterized using XRD, FTIR, FESEM, and Raman spectroscopy techniques, including Brunauer-Emmett-Teller, Barrett-Joyner-Halenda measurements. FTIR study revealed that 15% rGO @ Te has a wide C-O vibration band at ? 1,100�1,300�cm?1, over other compositions. FESEM study shows the Te-tubes dispersion in rGO layers. The EDX study revealed that 15% of the composition has an optimistic concentration of C and O elements. In other compositions, either at lower/higher rGO concentration, an uneven count of C and O is observed. These support efficient charge dynamics to achieve superior ultra-capacitor characteristics, thereby achieving specific capacitance Csp 170 + F/g @ 10�mV/s in a symmetric configuration. The reported values are thirty times higher than pristine Te-tubes (?5�F/g). This finding suggests that rGO @ Te is a promising candidate for supercapacitor. Copyright � 2022 Rani, Alegaonkar, Biswas, Jewariya, Kanta Haldar and Alegaonkar.Item LaCoO3Perovskite Nanoparticles Embedded in NiCo2O4Nanoflowers as Electrocatalysts for Oxygen Evolution(American Chemical Society, 2022-11-08T00:00:00) Kubba, Deeksha; Ahmed, Imtiaz; Kour, Pawanpreet; Biswas, Rathindranath; Kaur, Harpreet; Yadav, Kamlesh; Haldar, Krishna KantaIt is essential to design high-efficiency, stable, and inexpensive electrocatalysts for the oxygen evolution reaction (OER). We fabricate a hybrid system of perovskite LaCoO3 with spinel NiCo2O4 denoted LaCoO3/NiCo2O4 via an in situ hydrothermal process. In situ incorporation of LaCoO3 nanoparticles on the NiCo2O4 nanoflower surface is confirmed by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) images. Benefiting from the interface engineering, the obtained LaCoO3/NiCo2O4 hybrid nanoflowers exhibit the lowest overpotential of 353 at a current density of 10 mA/cm2 and a small Tafel slope of 59 mV/dec in alkaline media compared with pristine LaCoO3 (401 mV, 116 mV/dec) and NiCo2O4 (386 mV, 73 mV/dec). The optimized sample possesses a higher electrochemical surface of 111.45 cm2 than LaCoO3 perovskite (35.37 cm2) and NiCo2O4 spinel oxide (61.37 cm2) structures. The enhanced OER performance of the LaCoO3/NiCo2O4 composite structure is due to the accumulation of LaCoO3 nanoparticles over NiCo2O4 petals, which introduces a substantial number of electrochemically active sites for the catalysis process to promote charge and mass transport. In addition to this, LaCoO3/NiCo2O4 exhibits long-term stability over 20 h. Thus, it is believed that the excellent OER activity of the LaCoO3/NiCo2O4 composite structure is associated with strong interaction between LaCoO3 and NiCo2O4 as well as a large surface area and a unique flower structure. � 2022 American Chemical Society.Item Bifunctional electrochemical OER and HER activity of Ta2O5 nanoparticles over Fe2O3 nanoparticles(Royal Society of Chemistry, 2023-08-23T00:00:00) Ahmed, Imtiaz; Burman, Vishal; Biswas, Rathindranath; Roy, Ayan; Sharma, Rohit; Haldar, Krishna KantaHydrogen production via electrocatalytic water splitting offers encouraging innovations for sustainable and clean energy production as an alternative to conventional energy sources. The improvement of extraordinarily dynamic electrocatalysts is of great interest for work on the performance of gas generation, which is firmly blocked due to the sluggish kinetics of the oxygen evolution reaction (OER). The development of highly efficient base metal catalysts for electrochemical hydrogen and oxygen evolution reactions (HER and OER) is a challenging and promising task. In the present work, a particle over particles of Fe2O3 and Ta2O5 was successfully produced by hydrothermal treatment. The prepared composite shows promising catalytic performance when used as an electrochemical catalyst for OER and HER in alkaline and acidic electrolytes with low overpotentials of 231 and 201 mV at 10 mV cm?2, small Tafel slopes of 71 and 135 mV dec?1, respectively, and good stability properties. The calculated electrochemical surface area (ECSA) for composites is five times higher than that of the original oxides. The result of the OER is significantly better than that of commercial IrO2 catalysts and offers a promising direction for the development of water-splitting catalysts. � 2023 The Royal Society of Chemistry.Item Bio-assisted Synthesis of Au/Rh Nanostructure Electrocatalysts for Hydrogen Evolution and Methanol Oxidation Reactions: Composition Matters!(American Chemical Society, 2023-08-11T00:00:00) Biswas, Rathindranath; Dastider, Saptarshi Ghosh; Ahmed, Imtiaz; Biswas, Sayani; Mondal, Krishnakanta; Haldar, Krishna KantaIn the field of catalysis, bimetallic nanostructures have attracted much interest. Here, we discuss the effect of Au/Rh bimetallic composition-tuned nanostructure and electrocatalytic activity. A simple bio-assisted technique was used to fabricate multiple Au:Rh nanoplate ratios (25:75, 50:50, and 75:25). XRD and XPS studies show that both Au and Rh phases coexist in a bimetallic nanostructure, and electron microscopy confirms the formation of a triangle-shaped nanoplate. Au0.25Rh0.75 exhibited the maximum catalytic activity and good stability for hydrogen evolution reaction (HER) with an overpotential of 105 mV at a current density of 10 mA/cm2. On the other hand, Au0.50Rh0.50 exhibits a higher activity for methanol oxidation reaction (MOR) compared to the other compositions. Theoretical studies indicate that the electrocatalytic enhancement obtained for both HER and MOR relies on electronic modification effects of the surface, with the overall reaction energy profile being optimized due to Au/Rh d-band mixing. � 2023 American Chemical Society.Item Porous nanorods by stacked NiO nanoparticulate exhibiting corn-like structure for sustainable environmental and energy applications(Royal Society of Chemistry, 2023-07-20T00:00:00) Manjunath, Vishesh; Bimli, Santosh; Singh, Diwakar; Biswas, Rathindranath; Didwal, Pravin N.; Haldar, Krishna Kanta; Deshpande, Nishad G.; Bhobe, Preeti A.; Devan, Rupesh S.A porous 1D nanostructure provides much shorter electron transport pathways, thereby helping to improve the life cycle of the device and overcome poor ionic and electronic conductivity, interfacial impedance between electrode-electrolyte interface, and low volumetric energy density. In view of this, we report on the feasibility of 1D porous NiO nanorods comprising interlocked NiO nanoparticles as an active electrode for capturing greenhouse CO2, effective supercapacitors, and efficient electrocatalytic water-splitting applications. The nanorods with a size less than 100 nm were formed by stacking cubic crystalline NiO nanoparticles with dimensions less than 10 nm, providing the necessary porosity. The existence of Ni2+ and its octahedral coordination with O2? is corroborated by XPS and EXAFS. The SAXS profile and BET analysis showed 84.731 m2 g?1 surface area for the porous NiO nanorods. The NiO nanorods provided significant surface-area and the active-surface-sites thus yielded a CO2 uptake of 63 mmol g?1 at 273 K via physisorption, a specific-capacitance (CS) of 368 F g?1, along with a retention of 76.84% after 2500 cycles, and worthy electrocatalytic water splitting with an overpotential of 345 and 441 mV for HER and OER activities, respectively. Therefore, the porous 1D NiO as an active electrode shows multifunctionality toward sustainable environmental and energy applications. � 2023 The Royal Society of Chemistry.Item Efficient MoS2/V2O5 Electrocatalyst for Enhanced Oxygen and Hydrogen Evolution Reactions(Springer, 2023-04-29T00:00:00) Haldar, Krishna Kanta; Ahmed, Imtiaz; Biswas, Rathindranath; Mete, Shouvik; Patil, Ranjit A.; Ma, Yuan-RonElectrochemical (EC) water splitting is a promising approach for the generation of renewable hydrogen (H2) fuels and oxygen (O2) evolution. Composite structured molybdenum disulphide (MoS2)/vanadium pentoxide (V2O5) with low overpotential is a promising electrocatalyst for anodic and cathodic material for an alternative energy source. We fabricated a flower shape MoS2/V2O5 composite via a hydrothermal approach where V2O5grew on the surface of the MoS2 petals. The unique flower-type composite structure alleviates the surface expansion of electrode material. The electrochemical studies show that the composite possesses good stability with low overpotential and smaller Tafel slope compared to its constituents. It has been found that the MoS2/V2O5 composite exhibits a stable rate performance under the current density of 10�mA�cm?2 which indicates that the MoS2/V2O5 composite might be a good candidate for both oxygen and hydrogen evolution reactions.; Graphical Abstract: [Figure not available: see fulltext.] � 2023, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.Item Europium Molybdate/Molybdenum Disulfide Nanostructures with Efficient Electrocatalytic Activity for the Hydrogen Evolution Reaction(American Chemical Society, 2023-04-26T00:00:00) Ghosh, Debarati; Ghosal Chowdhury, Monojit; Biswas, Rathindranath; Haldar, Krishna Kanta; Patra, AmitavaThe design of hybrid nanostructures of molybdenum disulfide (MoS2) has been extensively explored as potent electrocatalysts for hydrogen generation reactions. Here, we report the in situ synthesis of a nanocomposite containing europium molybdate [Eu2(MoO4)3] and molybdenum disulfide (MoS2) for an enhanced electrochemical hydrogen evolution reaction (HER). The characteristic X-ray diffraction (XRD) peaks of both 2H-MoS2 and ?-Eu2(MoO4)3 confirm the formation of the nanocomposite. The nanoflower (NF) architecture of MoS2 coupled with flakes of europium molybdate is observed in the transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images, which lead to an enhanced surface area of the nanocomposite. Raman and X-ray photoelectron spectroscopy (XPS) studies reveal a variation in the layer thickness of MoS2 and a significant interfacial electronic interaction between Eu2(MoO4)3 and MoS2. As evident from the small onset potential of ?0.05 V vs reversible hydrogen electrode (RHE) and a lower overpotential value of 186 mV (at a current density of 10 mA/cm2), the nanocomposite outperforms pristine MoS2 nanoflowers in terms of electrocatalytic HER. The charge-transfer resistance of the nanocomposite (80.02 ?) is significantly low compared to pristine MoS2 (158.37 ?), thus confirming the enhanced interfacial charge transfer. The Tafel slope value of the nanocomposite (189 mV/dec) is notably less than that of pristine MoS2 (313 mV/dec), indicating the enhanced HER activity of the nanocomposite. The fabrication of lanthanide-containing MoS2 nanocomposites appears to be promising for an efficient electrocatalytic activity for the hydrogen evolution reaction. � 2023 American Chemical SocietyItem NiS/MoS2 Anchored Multiwall Carbon Nanotube Electrocatalyst for Hydrogen Generation and Energy Storage Applications(John Wiley and Sons Inc, 2023-04-05T00:00:00) Ahmed, Imtiaz; Biswas, Rathindranath; Iqbal, Muzahir; Roy, Ayan; Haldar, Krishna KantaAlthough sulfide-based materials are known to be efficient catalysts for oxygen evolution reactions (OER), hydrogen evolution reactions (HER), and supercapacitor applications, improving the catalytic activity of sulfide materials for both electrochemical water splitting and supercapacitors remains a challenging problem. Here, an easy and one-step integrated methodology is implemented to develop NiS/MoS2 anchored multiwall carbon nanotubes (MWCNT/NiS/MoS2) catalysts that can effectively and robustly catalyze both the HER and OER. The MWCNT/NiS/MoS2 hybrid composite offers the lowest overpotential of 201 mV and 193 mV to achieve a current density of 10 mA/cm2 and ?10 mA/cm2 with a small Tafel slope of 58 mV/dec 41 mV/dec for OER and HER, respectively, in alkaline and acidic conditions. The obtained multi-walled carbon nanotubes anchored with intertwined NiS/MoS2 have a significant number of active sites and defects throughout the structure. The hybrid composite electrode delivered a specific capacitance of >371.45 F/g at 2 A/g in a two-electrode system, along with high energy density of 51.63 Wh/kg (ED) along with the power density (PD) of 953.63 W/kg, and good capacitance retention ?82% after 2000 cycles. Therefore, a tandem electron transfer mechanism between NiS and MoS2 (MoS2?NiS) is believed to have an electrical synergistic effect that promotes both HER and OER activity. This research opens a new path for the construction of multi-component, cheap electrocatalysts that are highly effective for overall water splitting and energy storage applications. � 2023 Wiley-VCH GmbH.Item Br�nsted acid catalyzed mechanochemical�domino multicomponent reactions by employing liquid assisted grindstone chemistry(Nature Research, 2023-01-25T00:00:00) Borah, Biplob; Swain, Sidhartha; Patat, Mihir; Kumar, Bhupender; Prajapat, Ketan Kumar; Biswas, Rathindranath; Vasantha, R.; Chowhan, L. RajuHere, we have demonstrated a metal-free energy-efficient mechanochemical approach for expedient access to a diverse set of 2-amino-3-cyano-aryl/heteroaryl-4H-chromenes, tetrahydrospiro[chromene-3,4?-indoline], 2,2?-aryl/heteroarylmethylene-bis(3-hydroxy-5,5-dimethylcyclohex-2-enone) as well as tetrahydro-1H-xanthen-1-one by employing the reactivity of 5,5-dimethylcyclohexane-1,3-dione/cyclohexane-1,3-dione with TsOH?H2O as Br�nsted acid catalyst under water-assisted grinding conditions at ambient temperature. The ability to accomplish multiple C�C, C=C, C�O, and C�N bonds from readily available starting materials via a domino multicomponent strategy in the absence of metal-catalyst as well as volatile organic solvents with an immediate reduction in the cost of the transformation without necessitates complex operational procedures, features the significant highlights of this approach. The excellent yield of the products, broad functional group tolerances, easy set-up, column-free, scalable synthesis with ultralow catalyst loading, short reaction time, waste-free, ligand-free, and toxic-free, are other notable advantages of this approach. The greenness and sustainability of the protocol were also established by demonstrating several green metrics parameters. � 2023, The Author(s).