School Of Basic And Applied Sciences
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17
Browse
5 results
Search Results
Item Theoretical investigation of quantum capacitance of Co-doped ?-MnO2 for supercapacitor applications using density functional theory(Royal Society of Chemistry, 2023-09-07T00:00:00) Vijayan, Ariya K.; Sreehari, M.S.; Kour, Simran; Dastider, Saptarshi Ghosh; Mondal, Krishnakanta; Sharma, A.L.The rapid depletion of fossil fuels and ever-growing energy demand have led to a search for renewable clean energy sources. The storage of renewable energy calls for immediate attention to the fabrication of efficient energy storage devices like supercapacitors (SCs). As an electrode material for SCs, MnO2 has gained wide research interest because of its high theoretical capacitance, variable oxidation state, vast abundance, and low cost. However, the low electric conductivity of MnO2 limits its practical application. The conductivity of MnO2 can be enhanced by tuning the electronic states through substitution doping with cobalt. In the present work, first principles analysis based on density functional theory (DFT) has been used to examine the quantum capacitance (CQC) and surface charge (Q) of Co-doped MnO2. Doping enhanced the structural stability, electrical conductivity, potential window, and quantum capacitance of ?-MnO2. The shortened band gap and localized states near the Fermi level improve the CQC of ?-MnO2. For the narrow potential range (?0.4 to 0.4 V), the CQC is observed to increase with doping concentration. The highest CQC value at +0.4 V is observed to be 2412.59 ?F cm?2 for Mn6Co2O16 (25% doping), five times higher than that of pristine MnO2 (471.18 ?F cm?2). Mn6Co2O16 also exhibits better CQC and �Q� at higher positive bias. Hence, it can be used as an anode material for asymmetric supercapacitors. All these results suggest better capacitive performance of Co-doped ?-MnO2 for aqueous SCs and as an anode material for asymmetric supercapacitors. � 2023 The Royal Society of Chemistry.Item Unraveling the Role of Orbital Interaction in the Electrochemical HER of the Trimetallic AgAuCu Nanobowl Catalyst(American Chemical Society, 2023-03-24T00:00:00) Biswas, Rathindranath; Dastider, Saptarshi Ghosh; Ahmed, Imtiaz; Barua, Sourabh; Mondal, Krishnakanta; Haldar, Krishna KantaUnraveling the origins of the electrocatalytic activity of composite nanomaterials is crucial but inherently challenging. Here, we present a comprehensive investigation of the influence of different orbitals� interaction in the AuAgCu nanobowl model electrocatalyst during the hydrogen evolution reaction (HER). According to our theoretical study, AgAuCu exhibits a lower energy barrier than AgAu and AgCu bimetallic systems for the HER, suggesting that the trimetallic AgAuCu system interacts optimally with H*, resulting in the most efficient HER catalyst. As we delve deeper into the HER activity of AgAuCu, it was observed that the presence of Cu allows Au to adsorb the H* intermediate through the hybridization of s orbitals of hydrogen and s, dx2-y2, and dz2 orbitals of Au. Such orbital interaction was not present in the cases of AgAu and AgCu bimetallic systems, and as a result, these bimetallic systems exhibit lower HER activities. � 2023 American Chemical Society.Item Bio-assisted Synthesis of Au/Rh Nanostructure Electrocatalysts for Hydrogen Evolution and Methanol Oxidation Reactions: Composition Matters!(American Chemical Society, 2023-08-11T00:00:00) Biswas, Rathindranath; Dastider, Saptarshi Ghosh; Ahmed, Imtiaz; Biswas, Sayani; Mondal, Krishnakanta; Haldar, Krishna KantaIn the field of catalysis, bimetallic nanostructures have attracted much interest. Here, we discuss the effect of Au/Rh bimetallic composition-tuned nanostructure and electrocatalytic activity. A simple bio-assisted technique was used to fabricate multiple Au:Rh nanoplate ratios (25:75, 50:50, and 75:25). XRD and XPS studies show that both Au and Rh phases coexist in a bimetallic nanostructure, and electron microscopy confirms the formation of a triangle-shaped nanoplate. Au0.25Rh0.75 exhibited the maximum catalytic activity and good stability for hydrogen evolution reaction (HER) with an overpotential of 105 mV at a current density of 10 mA/cm2. On the other hand, Au0.50Rh0.50 exhibits a higher activity for methanol oxidation reaction (MOR) compared to the other compositions. Theoretical studies indicate that the electrocatalytic enhancement obtained for both HER and MOR relies on electronic modification effects of the surface, with the overall reaction energy profile being optimized due to Au/Rh d-band mixing. � 2023 American Chemical Society.Item Does Water Play a Crucial Role in the Growth of ZnO Nanoclusters in ZnO/Cu Catalyst?(American Chemical Society, 2023-05-04T00:00:00) Dastider, Saptarshi Ghosh; Panigrahi, Abhishek Ramachandra; Banerjee, Arup; Haldar, Krishna Kanta; Fortunelli, Alessandro; Mondal, KrishnakantaThe catalytically active configuration of ZnO/Cu in the commercial ZnO/Cu/Al2O3 catalyst for methanol synthesis from CO2 is still not clear. In this study, we employ density functional theory based methods to shed light on the structure and stoichiometry of ZnO clusters both free in the gas phase and also deposited on the Cu(111) surface under methanol synthesis conditions. Specifically, we investigate the structural evolution of ZnO clusters in the presence of hydrogen and water. We find that the stability of ZnO clusters increases with the concentration of water until the ratio of Zn and OH in the clusters reaches 1:2, with a morphological transition from planar to 3D configurations for clusters containing more than 4 Zn atoms. These clusters exhibit weak interaction with CO2, and water is predicted to block the active center. The Cu(111) surface plays an important role in enhancing the adsorption of CO2 on the ZnO/Cu(111) systems. We infer that ZnO nanostructures covered with OH species may be the morphology of the ZnO during the methanol synthesis from the hydrogenation of CO2 on the industrial catalyst. � 2023 American Chemical Society.Item Mechanism of Iron Integration into LiMn1.5Ni0.5O4for the Electrocatalytic Oxygen Evolution Reaction(American Chemical Society, 2022-09-14T00:00:00) Ahmed, Imtiaz; Biswas, Rathindranath; Dastider, Saptarshi Ghosh; Singh, Harjinder; Mete, Shouvik; Patil, Ranjit A.; Saha, Monochura; Yadav, Ashok Kumar; Jha, Sambhu Nath; Mondal, Krishnakanta; Singh, Harishchandra; Ma, Yuan-Ron; Haldar, Krishna KantaSpinel-type LiMn1.5Ni0.5O4 has been paid temendrous consideration as an electrode material because of its low cost, high voltage, and stabilized electrochemical performance. Here, we demonstrate the mechanism of iron (Fe) integration into LiMn1.5Ni0.5O4 via solution methods followed by calcination at a high temparature, as an efficient electrocatalyst for water splitting. Various microscopic and structural characterizations of the crystal structure affirmed the integration of Fe into the LiMn1.5Ni0.5O4 lattice and the constitution of the cubic LiMn1.38Fe0.12Ni0.5O4 crystal. Local structure analysis around Fe by extended X-ray absorption fine structure (EXAFS) showed Fe3+ ions in a six-coordinated octahedral environment, demonstrating incorporation of Fe as a substitute at the Mn site in the LiMn1.5Ni0.5O4 host. EXAFS also confirmed that the perfectly ordered LiMn1.5Ni0.5O4 spinel structure becomes disturbed by the fractional cationic substitution and also stabilizes the LiMn1.5Ni0.5O4 structure with structural disorder of the Ni2+ and Mn4+ ions in the 16d octahedral sites by Fe2+ and Fe3+ ions. However, we have found that Mn3+ ion production from the redox reaction between Mn4+ and Fe2+ influences the electronic conductivity significantly, resulting in improved electrochemical oxygen evolution reaction (OER) activity for the LiMn1.38Fe0.12Ni0.5O4 structure. Surface-enhanced Fe in LiMn1.38Fe0.12Ni0.5O4 serves as the electrocatalytic active site for OER, which was verified by the density functional theory study. � 2022 American Chemical Society.