School Of Basic And Applied Sciences

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Mitigation of Gliadin-Induced Inflammation and Cellular Damage by Curcumin in Human Intestinal Cell Lines
    (Springer, 2021-01-04T00:00:00) Gupta, Kunj Bihari; Mantha, Anil K.; Dhiman, Monisha
    Wheat is a major diet from many years; apart from its nutritious value, the wheat protein gliadin is responsible for many inflammatory diseases like celiac disease (CD), and non-celiac gluten sensitivity (NCGS). In this study, the gliadin-induced inflammation and associated cellular damage along with the protective role of curcumin was evaluated using human intestinal cell lines (HCT-116 and HT-29) as a model. Cells were cultured and exposed to 160 ?g/ml of gliadin, 100 ?M H2O2, and 10 ?M curcumin (3 h pretreatment) followed by the assessment of inflammation. Spectrophotometric methods, real-time-PCR, ELISA, Western blotting, and confocal microscopy techniques were used to assess inflammatory markers such as advanced oxidation protein products (AOPPs) level, activity of myeloperoxidase (MPO) and NADPH oxidase (NOX), cytokines, and cell damage markers. The results show that gliadin increases the AOPPs level and the activity of MPO and NOX expression. It enhances inflammation by increasing expression of pro-inflammatory cytokines, altered expression of anti-inflammatory, and regulatory cytokines. It exacerbates the cellular damage by increasing MMP-2 and 9 and decreasing integrin ? and ? expression. Gliadin promotes disease pathogenesis by inducing the inflammation and cellular damage which further alter the cellular homeostasis. The pretreatment of curcumin counteracts the adverse effect of gliadin and protect the cells via diminishing the inflammation and help the cell to regain the cellular morphology suggesting phytochemical-based remedial interventions against wheat allergies. � 2021, Springer Science+Business Media, LLC, part of Springer Nature.
  • Item
    New pentacyclic triterpene from Potentilla atrosanguinea Lodd. as anticancer agent for breast cancer targeting estrogen receptor-?
    (Taylor and Francis Ltd., 2021-10-04T00:00:00) Kumar, Amit; Gupta, Kunj Bihari; Dhiman, Monisha; Arora, Saroj; Jaitak, Vikas
    One new (compound 3) along with two previously known ursane type triterpenoids (compounds 1 and 2) were purified by chromatographic techniques from ethyl acetate extract of aerial parts of Potentilla atrosanguniea and characterized by HRMS, 1 D and 2 D-NMR. Compounds 1 (ursolic acid), 2 (euscaphic acid) and 3 (3?,20?-dihydroxy 2-oxo-urs-12-en-28-oic acid) were tested for their antiproliferative activity along with standard bazedoxifene. Compounds 1 and 3 were found to be of higher activity (3.71 and 6.05 ?g/mL) as compared to compound 2 and bazedoxifene (IC50: 24.53 and 17.87 ?g/mL). Anti-estrogenic activity of three compounds on breast cancer (BC) were studied in vitro by accessing their antiproliferative activity and binding with estrogen receptor alpha (ER-?). All three compounds have effective binding affinity towards ER-? and decreased cell growth by downregulating the expression of mRNA and its translational protein as tested by semi-qRT-PCR and western blotting. In terms of effectiveness compounds 1 and 3 were found more active due to their antiproliferative, and antiestrogenic activity as compared to standard bazedoxifene. � 2021 Informa UK Limited, trading as Taylor & Francis Group.
  • Item
    New pentacyclic triterpene from Potentilla atrosanguinea Lodd. as anticancer agent for breast cancer targeting estrogen receptor-?
    (Taylor and Francis Ltd., 2021-10-04T00:00:00) Kumar, Amit; Gupta, Kunj Bihari; Dhiman, Monisha; Arora, Saroj; Jaitak, Vikas
    One new (compound 3) along with two previously known ursane type triterpenoids (compounds 1 and 2) were purified by chromatographic techniques from ethyl acetate extract of aerial parts of Potentilla atrosanguniea and characterized by HRMS, 1 D and 2 D-NMR. Compounds 1 (ursolic acid), 2 (euscaphic acid) and 3 (3?,20?-dihydroxy 2-oxo-urs-12-en-28-oic acid) were tested for their antiproliferative activity along with standard bazedoxifene. Compounds 1 and 3 were found to be of higher activity (3.71 and 6.05 ?g/mL) as compared to compound 2 and bazedoxifene (IC50: 24.53 and 17.87 ?g/mL). Anti-estrogenic activity of three compounds on breast cancer (BC) were studied in vitro by accessing their antiproliferative activity and binding with estrogen receptor alpha (ER-?). All three compounds have effective binding affinity towards ER-? and decreased cell growth by downregulating the expression of mRNA and its translational protein as tested by semi-qRT-PCR and western blotting. In terms of effectiveness compounds 1 and 3 were found more active due to their antiproliferative, and antiestrogenic activity as compared to standard bazedoxifene. � 2021 Informa UK Limited, trading as Taylor & Francis Group.