School Of Basic And Applied Sciences

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    Unraveling the Role of Orbital Interaction in the Electrochemical HER of the Trimetallic AgAuCu Nanobowl Catalyst
    (American Chemical Society, 2023-03-24T00:00:00) Biswas, Rathindranath; Dastider, Saptarshi Ghosh; Ahmed, Imtiaz; Barua, Sourabh; Mondal, Krishnakanta; Haldar, Krishna Kanta
    Unraveling the origins of the electrocatalytic activity of composite nanomaterials is crucial but inherently challenging. Here, we present a comprehensive investigation of the influence of different orbitals� interaction in the AuAgCu nanobowl model electrocatalyst during the hydrogen evolution reaction (HER). According to our theoretical study, AgAuCu exhibits a lower energy barrier than AgAu and AgCu bimetallic systems for the HER, suggesting that the trimetallic AgAuCu system interacts optimally with H*, resulting in the most efficient HER catalyst. As we delve deeper into the HER activity of AgAuCu, it was observed that the presence of Cu allows Au to adsorb the H* intermediate through the hybridization of s orbitals of hydrogen and s, dx2-y2, and dz2 orbitals of Au. Such orbital interaction was not present in the cases of AgAu and AgCu bimetallic systems, and as a result, these bimetallic systems exhibit lower HER activities. � 2023 American Chemical Society.
  • Item
    DNA Origami-Templated Bimetallic Core-Shell Nanostructures for Enhanced Oxygen Evolution Reaction
    (American Chemical Society, 2022-04-15T00:00:00) Kaur, Gagandeep; Biswas, Rathindranath; Haldar, Krishna Kanta; Sen, Tapasi
    Hydrogen generation through electrocatalytic water splitting offers promising technology for sustainable and clean energy production as an alternative to conventional energy sources. The development of highly active electrocatalysts is of immense interest for improving the efficiency of gas evolution, which is strongly hindered due to the sluggish kinetics of oxygen evolution reaction (OER). Herein, we present the design of Ag-coated Au nanostar (core-shell-type Au@Ag nanostar) monomer structures assembled on rectangular DNA origami and study their electrocatalytic activities through OER, which remains unexplored. Our designed DNA origami-templated bimetallic nanostar catalyst showed excellent OER activity and high stability without using any external binder and exhibited a current density of 10 mA cm-2at a low overpotential of 266 mV, which was smaller than those of ss-DNA-functionalized Au@Ag nanostars and DNA origami-templated pure Au nanostars. Our results reveal that DNA origami-assembled core-shell Au@Ag nanostars show better electrocatalytic performance as compared to pure-core Au nanostars immobilized on DNA origami, owing to the presence of a highly conductive Ag layer. Such controlled assembly of bimetallic nanostructures on a DNA origami template can provide additional electrochemical surface area and a higher density of active sites resulting in enhanced electrocatalysis. � 2022 American Chemical Society. All rights reserved.
  • Item
    Green Approach for the Fabrication of Au/ZnO Nanoflowers: A Catalytic Aspect
    (American Chemical Society, 2021-03-19T00:00:00) Biswas, Rathindranath; Banerjee, Biplab; Saha, Monochura; Ahmed, Imtiaz; Mete, Shouvik; Patil, Ranjit A.; Ma, Yuan-Ron; Haldar, Krishna Kanta
    An easy, environmentally benign, and biomimetic approach employing Azadirachta indica (neem) leaf extract as a reducing as well as capping agent was used for the fabrication of gold (Au)/zinc oxide (ZnO) hybrid nanoflowers in one pot without utilizing any hazardous chemicals. The different phytoconstituents, for example, nimbolide, azadirachtin, ascorbate, etc., present in A. indica (neem) leaf extract synergistically reduce gold(III) ions to gold(0), which later on acts as an active surface for the growth of zinc oxide (ZnO) via thermal decomposition of sodium zincate [Na2Zn(OH)4]. The development of Au/ZnO hybrid nanoflowers was observed by estimating the absorption maxima at various time intervals in the wake of adding a Au precursor to the aqueous extract. X-ray diffraction (XRD) studies and X-ray photoelectron spectroscopy (XPS) investigation unambiguously confirm the formation of highly crystalline Au/ZnO composed of Au(0) and ZnO. The as-synthesized Au/ZnO hybrid nanoflowers were analyzed utilizing different spectroscopic and microscopic techniques. The transmission electron microscopy (TEM) images clearly show that the synthesized hybrid Au/ZnO nanoflowers are monodisperse and uniform. The fabricated Au/ZnO nanoflowers were used as a catalyst for the efficient reduction of various aromatic nitro compounds to corresponding amino compounds with excellent yield (76-94%) in the presence of reducing agent sodium borohydride. The superior catalytic properties were credited to the extraordinary nanoflower morphology and the synergistic impact of the typified Au nanoparticles. � 2021 American Chemical Society.
  • Thumbnail Image
    Item
    Nickel oxide decorated zinc oxide composite nanorods: Excellent catalyst for photoreduction of hexavalent chromium
    (Academic Press Inc., 2018) Singh, Simranjeet; Ahmed,Imtiaz; Haldar, Krishna Kanta
    In light of the growing interest and ability to search for new materials, we have synthesized Nickel oxide (NiO) nanoparticles decorated Zinc (ZnO) nanorods composite (NiO/ZnO) nanostructure. The NiO/ZnO heterostructure formation was confirmed by X-ray powder diffraction and high-resolution transmission electron microscopy (HRTEM). The fabricated environmental friendly NiO/ZnO composite nanostructure shows a well-defined photoreduction characteristic of hexavalent Chromium (Cr) (VI) to tri-valent Chromium (Cr) (III) under UV-light. Such an enhanced photoreduction property is attributed due to the decreased electron-hole recombination process which was proved by photoluminescence (PL) spectroscopy, photocurrent study, and electrochemical impedance spectroscopy. Furthermore, the photocatalytic activity rate of the NiO decorated ZnO nanorods was much higher than that of bare ZnO nanorods for the reduction of chromium (VI) and the rate is found to be 0.306 min?1. These results have demonstrates that suitable surface engineering may open up new opportunities in the development of high-performance photocatalyst. ? 2018 Elsevier Inc.