School Of Basic And Applied Sciences
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17
Browse
2 results
Search Results
Item Human apurinic/apyrimidinic endonuclease (APE1) is acetylated at DNA damage sites in chromatin, and acetylation modulates its DNA repair activity(American Society for Microbiology, 2016) Roychoudhury, S.; Nath, S.; Song, H.; Hegde, M.L.; Bellot, L.J.; Mantha, Anil K.; Sengupta, S.; Ray, S.; Natarajan, A.; Bhakat, K.K.Apurinic/apyrimidinic (AP) sites, the most frequently formed DNA lesions in the genome, inhibit transcription and block replication. The primary enzyme that repairs AP sites in mammalian cells is the AP endonuclease (APE1), which functions through the base excision repair (BER) pathway. Although the mechanism by which APE1 repairs AP sites in vitro has been extensively investigated, it is largely unknown how APE1 repairs AP sites in cells. Here, we show that APE1 is acetylated (AcAPE1) after binding to the AP sites in chromatin and that AcAPE1 is exclusively present on chromatin throughout the cell cycle. Positive charges of acetylable lysine residues in the N-terminal domain of APE1 are essential for chromatin association. Acetylation-mediated neutralization of the positive charges of the lysine residues in the N-terminal domain of APE1 induces a conformational change; this in turn enhances the AP endonuclease activity of APE1. In the absence of APE1 acetylation, cells accumulated AP sites in the genome and showed higher sensitivity to DNA-damaging agents. Thus, mammalian cells, unlike Saccharomyces cerevisiae or Escherichia coli cells, require acetylation of APE1 for the efficient repair of AP sites and base damage in the genome. Our study reveals that APE1 acetylation is an integral part of the BER pathway for maintaining genomic integrity. ? 2017 Roychoudhury et al.Item Scaffold attachment factor A (SAF-A) and Ku temporally regulate repair of radiation-induced clustered genome lesions(Impact Journals LLC, 2016) Hegde, M.L.; Dutta, A.; Yang, C.; Mantha, Anil K.; Hegde, P.M.; Pandey, A.; Sengupta, S.; Yu, Y.; Calsou, P.; Chen, D.; Lees-Miller, S.P.; Mitra, S.Ionizing radiation (IR) induces highly cytotoxic double-strand breaks (DSBs) and also clustered oxidized bases in mammalian genomes. Base excision repair (BER) of bi-stranded oxidized bases could generate additional DSBs as repair intermediates in the vicinity of direct DSBs, leading to loss of DNA fragments. This could be avoided if DSB repair via DNA-PK-mediated nonhomologous end joining (NHEJ) precedes BER initiated by NEIL1 and other DNA glycosylases (DGs). Here we show that DNAPK subunit Ku inhibits DGs via direct interaction. The scaffold attachment factor (SAF)-A, (also called hnRNP-U), phosphorylated at Ser59 by DNA-PK early after IR treatment, is linked to transient release of chromatin-bound NEIL1, thus preventing BER. SAF-A is subsequently dephosphorylated. Ku inhibition of DGs in vitro is relieved by unphosphorylated SAF-A, but not by the phosphomimetic Asp59 mutant. We thus propose that SAF-A, in concert with Ku, temporally regulates base damage repair in irradiated cell genome.