School Of Basic And Applied Sciences
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17
Browse
5 results
Search Results
Item Natural flavonoids exhibit potent anticancer activity by targeting microRNAs in cancer: A signature step hinting towards clinical perfection(Neoplasia Press, Inc., 2022-12-05T00:00:00) Tuli, Hardeep Singh; Garg, Vivek Kumar; Bhushan, Sakshi; Uttam, Vivek; Sharma, Uttam; Jain, Aklank; Sak, Katrin; Yadav, Vikas; Lorenzo, Jose M.; Dhama, Kuldeep; Behl, Tapan; Sethi, GautamCancer prevalence and its rate of incidence are constantly rising since the past few decades. Owing to the toxicity of present-day antineoplastic drugs, it is imperative to explore safer and more effective molecules to combat and/or prevent this dreaded disease. Flavonoids, a class of polyphenols, have exhibited multifaceted implications against several diseases including cancer, without showing significant toxicity towards the normal cells. Shredded pieces of evidence suggest that flavonoids can enhance drug sensitivity and suppress proliferation, metastasis, and angiogenesis of cancer cells by modulating several oncogenic or oncosuppressor microRNAs (miRNAs, miRs). They play pivotal roles in regulation of various biological and pathological processes, including various cancers. In the present review, the structure, chemistry and miR targeting efficacy of quercetin, luteolin, silibinin, genistein, epigallocatechin gallate, and cyanidin against several cancer types are comprehensively discussed. miRs are considered as next-generation medicine of recent times, and their targeting by naturally occurring flavonoids in cancer cells could be deemed as a signature step. We anticipate that our compilations related to miRNA-mediated regulation of cancer cells by flavonoids might catapult the clinical investigations and affirmation in the future. � 2022Item NOTCH signaling: Journey of an evolutionarily conserved pathway in driving tumor progression and its modulation as a therapeutic target(Elsevier Ireland Ltd, 2021-06-29T00:00:00) Aggarwal, Vaishali; Tuli, Hardeep Singh; Varol, Mehmet; Tuorkey, Muobarak; Sak, Katrin; Parashar, Nidarshana Chaturvedi; Barwal, Tushar Singh; Sharma, Uttam; Iqubal, Ashif; Parashar, Gaurav; Jain, AklankNotch signaling, an evolutionarily conserved signaling cascade, is critical for normal biological processes of cell differentiation, development, and homeostasis. Deregulation of the Notch signaling pathway has been associated with tumor progression. Thus, Notch presents as an interesting target for a variety of cancer subtypes and its signaling mechanisms have been actively explored from the therapeutic viewpoint. However, besides acting as an oncogene, Notch pathway can possess also tumor suppressive functions, being implicated in inhibition of cancer development. Given such interesting dual and dynamic role of Notch, in this review, we discuss how the evolutionarily conserved Notch signaling pathway drives hallmarks of tumor progression and how it could be targeted for a promising treatment and management of cancer. In addition, the up-to-date information on the inhibitors currently under clinical trials for Notch targets is presented along with how NOTCH inhibitors can be used in conjunction with established chemotherapy/radiotherapy regimes. � 2021 Elsevier B.V.Item Molecular mechanisms of action of epigallocatechin gallate in cancer: Recent trends and advancement(Academic Press, 2020-05-24T00:00:00) Aggarwal, Vaishali; Tuli, Hardeep Singh; Tania, Mousumi; Srivastava, Saumya; Ritzer, Erin E.; Pandey, Anjana; Aggarwal, Diwakar; Barwal, Tushar Singh; Jain, Aklank; Kaur, Ginpreet; Sak, Katrin; Varol, Mehmet; Bishayee, AnupamEpigallocatechin gallate (EGCG), also known as epigallocatechin-3-gallate, is an ester of epigallocatechin and gallic acid. EGCG, abundantly found in tea, is a polyphenolic flavonoid that has the potential to affect human health and disease. EGCG interacts with various recognized cellular targets and inhibits cancer cell proliferation by inducing apoptosis and cell cycle arrest. In addition, scientific evidence has illustrated the promising role of EGCG in inhibiting tumor cell metastasis and angiogenesis. It has also been found that EGCG may reverse drug resistance of cancer cells and could be a promising candidate for synergism studies. The prospective importance of EGCG in cancer treatment is owed to its natural origin, safety, and low cost which presents it as an attractive target for further development of novel cancer therapeutics. A major challenge with EGCG is its low bioavailability which is being targeted for improvement by encapsulating EGCG in nano-sized vehicles for further delivery. However, there are major limitations of the studies on EGCG, including study design, experimental bias, and inconsistent results and reproducibility among different study cohorts. Additionally, it is important to identify specific EGCG pharmacological targets in the tumor-specific signaling pathways for development of novel combined therapeutic treatments with EGCG. The present review highlights the ongoing development to identify cellular and molecular targets of EGCG in cancer. Furthermore, the role of nanotechnology-mediated EGCG combinations and delivery systems will also be discussed. � 2020 Elsevier LtdItem miR-590�5p: A double-edged sword in the oncogenesis process(Elsevier Ltd, 2022-06-12T00:00:00) Barwal, Tushar Singh; Singh, Neha; Sharma, Uttam; Bazala, Sonali; Rani, Medha; Behera, Alisha; Kumawat, Ram Kumar; Kumar, Pawan; Uttam, Vivek; Khandelwal, Akanksha; Barwal, Jyoti; Jain, Manju; Jain, AklankAccumulating evidence suggests the critical role of miR-590�5p in various aspects of cellular homeostasis, including cancer. Furthermore, we and others have recently demonstrated that miRNA-590�5p acts as an oncogene in some cancers while it acts as a tumor-suppressor in others. However, the role of miR-590�5p in oncogenesis is more complex, like a double-edged sword. Thus, this systematic review introduces the concept, mechanism, and biological function of miR-590�5p to resolve this apparent paradox. We have also described the involvement of miR-590�5p in crucial cancer-hallmarks processes like proliferation, invasion, metastasis, and chemo radioresistance. Finally, we have presented the possible genes/pathways targets of miR-590�5p through bioinformatics analysis. This review may help in designing better biomarkers and therapeutic targets for cancers. � 2022Item Molecular mechanisms of action of tocotrienols in cancer: Recent trends and advancements(MDPI AG, 2019) Aggarwal, V; Kashyap, D; Sak, K; Tuli, H.S; Jain, Aklank; Chaudhary, A; Garg, V.K; Sethi, G; Yerer, M.B.Tocotrienols, found in several natural sources such as rice bran, annatto seeds, and palm oil have been reported to exert various beneficial health promoting properties especially against chronic diseases, including cancer. The incidence of cancer is rapidly increasing around the world not only because of continual aging and growth in global population, but also due to the adaptation of Western lifestyle behaviours, including intake of high fat diets and low physical activity. Tocotrienols can suppress the growth of different malignancies, including those of breast, lung, ovary, prostate, liver, brain, colon, myeloma, and pancreas. These findings, together with the reported safety profile of tocotrienols in healthy human volunteers, encourage further studies on the potential application of these compounds in cancer prevention and treatment. In the current article, detailed information about the potential molecular mechanisms of actions of tocotrienols in different cancer models has been presented and the possible effects of these vitamin E analogues on various important cancer hallmarks, i.e., cellular proliferation, apoptosis, angiogenesis, metastasis, and inflammation have been briefly analyzed. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.