School Of Basic And Applied Sciences
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17
Browse
2 results
Search Results
Item Structure-based Virtual Screening and Molecular Dynamic Simulation Approach for the Identification of Terpenoids as Potential DPP-4 Inhibitors(Bentham Science Publishers, 2023-05-16T00:00:00) Pulikkottil, Ajay Aravind; Kumar, Amit; Jangid, Kailash; Kumar, Vinod; Jaitak, VikasBackground: Diabetes mellitus is a metabolic disorder where insulin secretion is compromised, leading to hyperglycemia. DPP-4 is a viable and safer target for type 2 diabetes mellitus. Computational tools have proven to be an asset in the process of drug discovery. Objective: In the present study, tools like structure-based virtual screening, MM/GBSA, and pharmacokinetic parameters were used to identify natural terpenoids as potential DPP-4 inhibitors for treating diabetes mellitus. Methods: Structure-based virtual screening, a cumulative mode of elimination technique, was adopted, identifying the top five potent hit compounds depending on the docking score and nonbonding interactions. Results: According to the docking data, the most important contributors to complex stability are hydrogen bonding, hydrophobic interactions, and Pi-Pi stacking interactions. The dock scores ranged from-6.492 to-5.484 kcal/mol, indicating robust ligand-protein interactions. The pharmacokinetic characteristics of top-scoring hits (CNP0309455, CNP0196061, CNP0122006, CNP0 221869, CNP0297378) were also computed in this study, confirming their safe administration in the human body. Also, based on the synthetic accessibility score, all top-scored hits are easily synthesizable. Compound CNP0309455 was quite stable during molecular dynamic simulation studies. Conclusion: Virtual database screening yielded new leads for developing DPP-4 inhibitors. As a result, the findings of this study can be used to design and develop natural terpenoids as DPP-4 inhibitors for the medication of diabetes mellitus. � 2024 Bentham Science Publishers.Item A Review on Molecular Mechanism of Flavonoids as Antidiabetic Agents(Bentham Science, 2019) Jasmin; Jaitak, VikasThe development of drugs possessing anti-diabetic activities is a long pursued goal in drug discovery. It has been shown that deregulated insulin mediated signaling, oxidative stress, obesity, and β-cell dysfunction are the main factors responsible for the disease. With the advent of new and more powerful screening assays and prediction tools, the idea of a drug that can effectively treat diabetes by targeting different pathways has re-bloomed. Current anti-diabetic therapy is based on synthetic drugs that very often have side effects. For this reason, there is an instantaneous need to develop or search new alternatives. Recently, more attention is being paid to the study of natural products. Their huge advantage is that they can be ingested in everyday diet. Here, we discuss various causes, putative targets, and treatment strategies, mechanistic aspects as well as structural features with a particular focus on naturally occurring flavonoids as promising starting points for anti-diabetic led development.